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Abstract: The prevalence of wildfires presents significant challenges for fire detection
systems, particularly in differentiating fire from complex backgrounds and maintaining de-
tection reliability under diverse environmental conditions. It is crucial to address these chal-
lenges for developing sustainable and effective fire detection systems. In this paper: (i) we
introduce a channel-wise attention-based architecture, achieving 95% accuracy and demon-
strating an improved focus on flame-specific features critical for distinguishing fire in
complex backgrounds. Through ablation studies, we demonstrate that our channel-wise
attention mechanism provides a significant 3–5% improvement in accuracy over the base-
line and state-of-the-art fire detection models; (ii) evaluate the impact of augmentation on
fire detection, demonstrating improved performance across varied environmental condi-
tions; (iii) comprehensive evaluation across color spaces including RGB, Grayscale, HSV,
and YCbCr to analyze detection reliability; and (iv) assessment of model vulnerabilities
where Fast Gradient Sign Method (FGSM) perturbations significantly impact performance,
reducing accuracy to 41%. Using Local Interpretable Model-Agnostic Explanations (LIME)
visualization techniques, we provide insights into model decision-making processes across
both standard and adversarial conditions, highlighting important considerations for fire
detection applications.

Keywords: fire detection; deep learning; attention mechanisms; adversarial attacks;
interpretability

1. Introduction
The rapid rise in wildfire occurrences globally presents a significant environmental

challenge, threatening ecosystems, infrastructure, and human life [1]. Data from leading
national wildfire monitoring organizations reveal that wildfire impact has intensified by
nearly threefold over the past ten years [2]. In 2022, the United States alone recorded
66,255 wildfires, affecting approximately 7.5 million acres of land [3]. Forests, comprising
over 30% of Earth’s terrestrial area [3], are particularly susceptible to these fires, resulting in
severe habitat destruction, biodiversity loss, and considerable declines in air quality [4,5].
This escalation, fueled by climate change and increased human activity, highlights the
urgent demand for innovative fire detection systems [6]. The recent January 2025 wild-
fires in Los Angeles, exacerbated by severe drought and strong Santa Ana winds, further
emphasized this need through widespread destruction [7]. Traditional sensor-based de-
tection systems, while useful in localized areas, often struggle with real-time detection
in remote and expansive environments, making them less effective for widespread fire
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monitoring [8]. Given this need, image-based fire detection has emerged as a promising
alternative, leveraging deep learning to detect flames with improved precision [9–23].

Convolutional neural networks (CNNs) such as VGG19 [24] and ResNet [25] have
shown potential for capturing complex flame-specific features across varied environmental
conditions, advancing beyond traditional color and motion-based methods [26,27]. How-
ever, despite their effectiveness, CNNs frequently struggle with distinguishing flames from
visually similar elements, especially in high-noise or dynamic environments, leading to
inconsistencies in classification accuracy [26]. This limitation highlights the importance
of enhancing feature specificity and reducing model reliance on background details for
robust, real-world fire detection.

Moreover, fire detection systems can face vulnerabilities to adversarial perturbations,
where minor input modifications can compromise model predictions—posing challenges in
safety-critical applications like surveillance and environmental monitoring [28]. Adversar-
ial training, including methods like Fast Gradient Sign Method (FGSM), has shown promise
in fields like facial recognition for reinforcing model resilience [29]. However, adversarial
robustness remains underexplored in fire detection, despite its potential to significantly
improve reliability under varied conditions.

Data scarcity further complicates fire detection, as available datasets often lack diver-
sity across environmental scenarios [30]. Data augmentation methods, such as rotation,
scaling, and noise injection, help diversify samples and enable models to adapt better to
new conditions. Effective augmentation is essential for enhancing model sensitivity and
resilience, particularly in applications with limited labeled data.

To address the critical challenges in fire detection within high-noise, dynamic envi-
ronments, we present a channel-wise attention-based architecture that emphasizes flame-
specific features, with evaluations on adversarial effects and interpretability. Our approach
applies structured data augmentation to broaden the training sample diversity, supporting
consistent performance across varied fire scenarios. This model addresses specific limi-
tations in traditional methods, providing a practical solution for complex real-world fire
detection. The main contributions of this paper are:

• We propose an attention-based model by introducing channel-wise attention modules
within the MobileNetV2 architecture, enabling the model to selectively focus on flame-
relevant features while filtering out background noise. Through ablation studies, we
validate that our channel-wise attention mechanism provides a 3% improvement in
accuracy over the baseline architecture, achieving 95% accuracy on fire and smoke
detection with precision scores of 96% and 97% on fire and smoke images respectively.
Our proposed model improves the sensitivity and reduces false positives, particularly
in high-noise environments where traditional CNN models often struggle.

• To address the limitations of fire detection datasets, we apply structured data aug-
mentation, including rotation, scaling, flipping, and noise injection. Our proposed
model trained with augmented images achieved 97% accuracy on fire and smoke
detection. These augmentations increase sample diversity, enabling the model to
generalize more effectively across varied environmental conditions and enhancing its
adaptability to real-world fire scenarios. Moreover, we also perform evaluation across
RGB, Grayscale, HSV, and YCbCr color spaces to explore the impact of color space
on fire detection. Our results reveal RGB as the optimal choice, providing the highest
accuracy of 95% due to its comprehensive color information crucial for distinguishing
flame characteristics.

• Our proposed architecture outperforms state-of-the-art pre-trained models [31], in-
cluding VGG16 (78%) [24], VGG19 (80%) [24], MobileNetV2 (92%) [19], EfficientNetB7
(82%) [32], ResNet50V2 (92%) [25], Xception (91%) [14], DenseNet121 (92%) [33],
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and InceptionV3 (92%) [34], as well as recent fire detection models like FireXplainer
(92%) [17], FireXplainNet (90%) [35], and FireDetXplainer (91%) [36], achieving 95%
accuracy and demonstrating a 3–5% improvement in detection performance across
precision, recall, and F1-score metrics, underscoring its effectiveness for complex fire
detection tasks.

• We provide interpretable insights into model decision-making across both standard
and adversarial conditions, leveraging LIME visualization techniques. These visu-
alizations not only explain model predictions by highlighting flame-relevant areas
but also reveal how adversarial perturbations affect feature attention, demonstrating
shifts in model focus that lead to misclassification. This analysis provides crucial
understanding of model behavior under different operational conditions. We ana-
lyze model vulnerabilities to adversarial attacks using Fast Gradient Sign Method
(FGSM) [28], revealing significant performance degradation under perturbations. Us-
ing LIME, we demonstrate how subtle input modifications lead to shifts in the model’s
focus, substantially affecting classification reliability and providing insights into the
vulnerabilities of deep learning models in fire detection systems.

The structure of this paper is as follows: Section 2 reviews existing deep learning-
based approaches for fire and smoke detection. Section 3 presents our proposed ap-
proach, including dataset characteristics, preprocessing techniques, channel-wise attention-
augmented MobileNetV2 architecture, experimental configuration, and evaluation frame-
work. Section 4 evaluates model performance across baseline pre-trained models and
state-of-the-art models, examining the impact of data augmentation, different color spaces,
adversarial attacks, and LIME-based interpretability analysis. Section 5 examines the impli-
cations of experimental findings, model capabilities, and technical limitations. Section 6
concludes the study and outlines directions for future research.

2. Related Work
Fire detection has evolved significantly with the application of machine learning and

deep learning, especially through image processing techniques [9–23]. Traditional fire de-
tection methods based on color and motion analysis were early approaches in this field but
often failed under varying lighting conditions, leading to high rates of false positives [10].
These early methods, while foundational, could not reliably handle dynamic environments
where background changes impact detection accuracy. With the advancement of deep
learning, convolutional neural networks (CNNs), such as VGG and ResNet, have become
prevalent in fire detection research [14,17,19,26,27,33,37]. These models capture complex
visual patterns specific to flames, improving the precision and recall of detection systems
in diverse environments. However, despite their success in classifying fire and non-fire im-
ages, these models often lack the nuanced focus necessary to isolate flame-specific features,
leading to inconsistencies in complex scenes where background elements interfere with
model predictions [26].

Khan et al. [38] proposed a Cross-Module Attention Network (CANet) that com-
bines squeezing and multi-scale feature selection to improve accuracy and computa-
tional efficiency in resource-constrained environments. Dilshad et al. [39] introduced
the Optimized Fire Attention Network (OFAN), which leverages attention modules and
lightweight architectures for real-time IoT-based fire detection. Yar et al. [40] presented a
modified YOLOv5 architecture optimized for detecting small and large fire regions, ad-
dressing challenges in urban and indoor settings. Khan et al. [41] developed MAFire-Net, a
multi-attention framework that enhances spatial and channel feature discrimination for
accurate fire detection in complex scenarios. Additionally, Yar et al. [42] proposed an
attention-based CNN model tailored for adverse weather conditions, incorporating data



Sensors 2025, 25, 1140 4 of 23

augmentation techniques to improve performance under foggy and low-light environments.
Dilshad et al. [16] proposed E-FireNet, a VGG-inspired model fine-tuned for deployment
on resource-constrained platforms like drones, ensuring robust performance in surveillance
applications. Khan et al. [43] introduced a large-scale fire dataset encompassing diverse
and challenging real-world scenarios, providing a broader benchmark for evaluating deep
learning-based fire detection models.

FireDetXplainer, a MobileNetV3-based model using Grad-CAM and LIME, is intro-
duced to improve interpretability in fire detection, achieving high accuracy while enhancing
transparency in model decisions [36]. Additionally, FireXplainNet, a CNN-based architec-
ture optimized for wildfire detection, utilized LIME to achieve significant accuracy gains on
the FLAME and Wildfire datasets [35]. Similarly, FireXplainer [17], a transfer learning-based
model incorporating convolution blocks and Grad-CAM for interpretability, demonstrated
specific improvements in precision, recall, and F1-score on wildfire detection dataset.

In recent years, attention mechanisms have been integrated into deep learning archi-
tectures to improve feature extraction specificity, enabling models to concentrate on key
regions of interest [9,44]. For instance, attention layers in CNNs have shown effectiveness
in medical imaging and object detection, enhancing classification performance by isolating
task-relevant features and reducing background interference [9]. An attention-augmented
VGG19 model, for example, demonstrated quantifiable improvements in sensitivity and
specificity by prioritizing critical regions in images [9]. While some studies have introduced
attention mechanisms for fire detection [42,45], further exploration is needed to refine the
isolation of flame-specific features, particularly in high-noise, variable environments. This
gap highlights the need for attention-based fire detection models that can accurately capture
flame characteristics amidst complex backgrounds, a critical requirement for reliable fire
detection in real-world scenarios.

Adversarial vulnerabilities present additional challenges in fire detection systems, as
CNN models are susceptible to minor but structured perturbations that can lead to signifi-
cant misclassification errors. Methods such as the Fast Gradient Sign Method (FGSM) and
Projected Gradient Descent (PGD) expose these weaknesses, even when low-level pertur-
bations are introduced, affecting the stability of CNNs in adversarial conditions [28]. Such
vulnerabilities raise concerns regarding the reliability of CNNs in real-world fire detection,
where environmental noise or targeted attacks can compromise model performance. In
safety-critical applications such as facial recognition and surveillance, adversarial training
with FGSM has been employed to reduce classification errors and improve model stability
under adversarial conditions [29].

Building on advancements in attention mechanisms [9], data augmentation [30], and
adversarial analysis [28,29], this study introduces a MobileNetV2 model enhanced with
channel-wise attention mechanisms, specifically optimized for the detection of flame fea-
tures in complex environments. The proposed model incorporates channel-wise attention
to focus on flame-specific characteristics, effectively reducing false positive rates caused by
background interference. The vulnerability of the model to adversarial perturbations is
systematically evaluated using FGSM, providing insights into its stability under potential
adversarial conditions. To address data limitations and enhance generalizability, structured
data augmentation techniques—such as rotation, flipping, scaling, and noise injection—are
employed to increase dataset diversity. Model interpretability is facilitated using LIME,
offering transparent visualizations of the decision-making process, which is crucial for
deploying fire detection models in real-world scenarios. This comprehensive approach
aims to improve detection precision, reduce false positives, and ensure robustness across
diverse fire scenarios.



Sensors 2025, 25, 1140 5 of 23

3. Methodology
3.1. Overview

In this section, we present an overview of our proposed methodology for fire detection,
as illustrated in the Figure 1. Our approach leverages the strengths of MobileNetV2 by
incorporating pre-processing techniques, color transformation methods, and channel-
wise attention mechanisms. The workflow begins with the input image undergoing pre-
processing steps, including resizing, normalization, and noise reduction, to enhance image
quality. The pre-processed image is then transformed using color schemes such as HSV
and YCbCr to improve flame feature representation. Feature extraction is conducted
using MobileNetV2, augmented with channel-wise attention modules to emphasize flame-
relevant regions while suppressing background noise. Finally, the model is evaluated for
robustness and accuracy using metrics such as precision, recall, and F1-score to ensure
reliable performance across diverse fire scenarios.

The input images, consisting of fire, smoke, and neutral scenes, are first subjected to a
series of pre-processing steps that include normalization, augmentation, and standardiza-
tion. These pre-processing steps are crucial for enhancing the diversity of training data,
mitigating overfitting, and ensuring that the model is trained under varied conditions to
improve generalization. The pre-processed images are then transformed into different
color schemes, including RGB, Grayscale, HSV, and YCbCr, to explore the impact of color
representation on the model’s performance.

Feature extraction is performed using MobileNetV2 as the backbone, which is
lightweight and well-suited for computational efficiency [17,36]. To further improve the
model’s focus on relevant features, we incorporate a channel-wise attention-based module
after feature extraction [46]. This module helps the model emphasize critical features that
are essential for distinguishing between fire, smoke, and natural scenes, thereby enhancing
classification accuracy.

The refined features are then passed to a classifier for training and evaluation. In the
final stage, the model is evaluated using both original and adversarially perturbed images.
We apply LIME [47] to visualize and interpret the key regions that influenced the model’s
decision-making process under different conditions. By leveraging both original and
adversarial testing images, our methodology not only focuses on achieving high accuracy
but also highlights the vulnerabilities to adversarial attacks, providing critical insights into
the model’s limitations in real-world fire detection scenarios.

Figure 1. Workflow of our proposed methodology.
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3.2. Data Collection and Preprocessing

The dataset used in this study is the Fire-Smoke-Dataset, sourced from a publicly
available repository [48] for fire and smoke detection, which provides a diverse collection
of FIRE, SMOKE, and NON-FIRE images. It consists of 1000 high-quality images for each
category: FIRE, SMOKE, and NON-FIRE images. This dataset has been widely recognized
for its comprehensive nature and suitability for fire detection research [21,49], as it provides
a balanced and diverse set of scenarios encompassing different levels of fire intensity,
environmental conditions, and backgrounds.

To enhance the diversity of the training data and improve the model’s generalization,
we applied a series of data augmentation techniques, including horizontal flipping, vertical
flipping, random rotations, and scaling. The Fire-Smoke-Dataset used in this study consists
of a total of 3000 high-quality images, with 1000 images per class (FIRE, SMOKE, and
NON-FIRE). We split this dataset into training (2400 images, 800 per class), validation
(300 images, 100 per class), and test (300 images, 100 per class) sets. These augmentation
methods increased the total number of training images to 9600 (3200 per class), resulting in
a 4-fold expansion of the training data. The validation and test sets remained unchanged to
ensure a fair evaluation of the model’s performance.

The collected images underwent additional preprocessing tailored to explore two primary
aspects of the classification task. First, we explored the impact of different color schemes on
the multiclass fire detection problem by transforming the images into various color spaces,
including RGB, Grayscale, HSV, and YCbCr. This enabled a systematic evaluation of the role
of color information in distinguishing fire from natural images under different lighting and
environmental conditions. All images are resized and normalized to a range of [0, 255] to en-
sure consistency in pixel value distribution across the dataset. These preprocessed images are
then used to train and evaluate our enhanced proposed model with an attention mechanism,
ensuring standardized input features for model training.

3.3. Proposed Model

Our proposed model is built upon MobileNetV2, a lightweight and computationally
efficient architecture, which is highly suitable for real-time and edge applications [17,36].
While MobileNetV2 provides a foundation for feature extraction, its capabilities are further
enhanced through the integration of a channel-wise attention module, designed to im-
prove the model’s discriminative ability by emphasizing relevant features and suppressing
redundant information. We inspired the block attention module from a previous study [46].

The overall architecture of the proposed model is illustrated in Figure 2. The Mo-
bileNetV2 backbone extracts hierarchical features from input images, while the channel-
wise attention mechanism is integrated after each inverted residual block to refine these
features progressively. This design ensures that the attention module operates in tandem
with the backbone, enabling the model to effectively capture discriminative patterns related
to fire, smoke, and natural scenes under diverse conditions.

Figure 2. Our proposed architecture with Channel-wise attention modules.
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3.3.1. Design of the Channel-Wise Attention Mechanism

The channel-wise attention mechanism selectively focuses on the most informative
channels within the feature map, thereby enhancing the model’s ability to identify critical
visual cues. The module operates as follows:

1. Input Feature Map: The input feature map F ∈ RH×W×C, where H, W, and C represent
the height, width, and number of channels, respectively, is fed into the attention module.

2. Parallel Pooling Operations: The feature map F is processed through two paral-
lel branches:

• Global Average Pooling (AvgPool): Computes the average activation for each
channel, capturing global contextual information across spatial dimensions.

• Global Max Pooling (MaxPool): Extracts the most salient features of each channel
by selecting the maximum activation.

These operations yield two descriptors, favg ∈ RC and fmax ∈ RC, that encode
complementary channel-wise information.

3. Shared Multi-Layer Perceptron (MLP): Both descriptors are passed through a shared
MLP composed of two fully connected layers with ReLU activation. The shared design
reduces parameter overhead while effectively learning channel-wise dependencies:

fshared = W2σ(W1 favg) + W2σ(W1 fmax),

where W1 and W2 are learnable weight matrices, and σ denotes the ReLU activation function.
4. Element-Wise Addition and Attention Weight Calculation: The outputs of the

two branches are aggregated via element-wise addition and passed through a sigmoid
activation function to produce the final attention weights α ∈ RC:

α = σ( fshared).

5. Feature Re-weighting: The attention weights α are applied to the original feature
map F through channel-wise multiplication, generating the refined feature map
Fout ∈ RH×W×C:

Fout = α · F.

This process ensures that the most relevant channels are amplified, while less signifi-
cant ones are suppressed, resulting in improved feature representation for fire classification.
The channel-wise attention module is seamlessly integrated with the MobileNetV2 back-
bone by placing it after each inverted residual block. This integration allows for progressive
refinement of features at different stages of the network, complementing the hierarchical
feature extraction process of MobileNetV2. The model achieves enhanced discriminative
capability by focusing on channel-wise importance at multiple levels while maintaining
computational efficiency.

3.3.2. Connections Between Model Components

The proposed architecture is composed of the following key components:

• Feature Extraction and Refinement: The MobileNetV2 backbone serves as the pri-
mary feature extractor, while the channel-wise attention module refines the extracted
features by selectively re-weighting channels based on their importance.

• Classification Head: The refined feature maps are passed through a series of fully
connected layers, interspersed with dropout layers (dropout rate of 0.5) to prevent
overfitting during training.
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• Output Layer: The final fully connected layer employs a softmax activation function
to produce class probabilities for three categories: FIRE, SMOKE, and NON-FIRE.

By combining the lightweight MobileNetV2 backbone with an efficient channel-wise
attention mechanism, the proposed architecture achieves a balance between accuracy
and computational cost. The integration of attention modules ensures that the model
focuses on discriminative visual cues, enabling robust fire classification across diverse
environmental conditions. This design is particularly advantageous for real-time and
edge-based applications, where computational resources are constrained.

3.4. Experiment Setup

To evaluate the effectiveness of our proposed model for fire classification, we con-
ducted extensive experiments on the Fire-Smoke-Dataset described earlier. The dataset con-
sists of 1000 images each for FIRE, SMOKE, and NON-FIRE, split into training (2400 images,
800 per class), validation (300 images, 100 per class), and test (300 images, 100 per class)
sets using an 80:10:10 ratio. We chose this dataset split inspired by other approaches for
fire detection research [21,49], as it provides a balanced and diverse set of scenarios en-
compassing different levels of fire intensity, environmental conditions, and backgrounds.
The impact of the data augmentation techniques applied to the training set, as detailed in
Section 3.2, was to increase the total number of training images to 9600 (3200 per class),
resulting in a 4-fold expansion of the training data.

Our proposed model is trained on these splits to assess its performance in distinguish-
ing between fire, smoke, and natural scenes. The training process incorporates standard
deep learning practices such as data shuffling, batch normalization, and early stopping
to ensure convergence without overfitting. For training, we utilized the Adam optimizer
with an initial learning rate of 0.001, and the learning rate was reduced by a factor of 0.1 if
the validation loss plateaued for five consecutive epochs. The batch size was set to 32, and
training was performed for up to 50 epochs with early stopping applied to halt training
once validation performance stopped improving for 10 epochs. Hyperparameters were
selected through a grid search approach, where we explored combinations of learning
rates (0.0001, 0.001, 0.01), batch sizes (16, 32, 64), and dropout rates (0.2, 0.5) to optimize
validation performance. The best configuration, based on validation accuracy and loss, was
used for the final training. All experiments were conducted on a system equipped with
two NVIDIA GeForce RTX 2080 Ti GPUs (each with 11 GB of memory), running on Driver
Version 535.183.01 and CUDA Version 12.2. The training environment was implemented
using PyTorch 1.7, leveraging the multi-GPU setup to accelerate model training.

In addition to evaluating our proposed model, we also fine-tuned several well-
known pre-trained models to serve as benchmarks for comparison [31] and state-of-the-art
fire detection models [17,35,36]. These models included VGG16 [24], VGG19 [24], Mo-
bileNetV2 [19], EfficientNetB7 [32], ResNet50V2 [25], Xception [14], DenseNet121 [33], and
InceptionV3 [34]. By fine-tuning these established architectures, we aimed to provide
a comprehensive comparison to highlight the strengths of our proposed model. Each
model is fine-tuned using the same training and validation splits, allowing for a consistent
evaluation across different architectures.

Furthermore, we conducted experiments to explore the impact of different color
schemes on the classification performance of our proposed model. Specifically, we ex-
perimented with various color spaces, including RGB, Grayscale, HSV, and YCbCr, and
channel-specific schemes such as Red, Green, and Blue, to gain insights into how color in-
formation influences fire detection. Moreover, we assessed the impact of data augmentation
on model performance by applying techniques such as random rotations, flips, and scaling
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to the training images. The goal of these experiments is to evaluate whether increased data
diversity can improve the generalization capabilities of our proposed model.

3.5. Evaluation Metrics

In the context of multi-class fire and smoke detection, evaluating the performance of
our proposed model requires a thorough analysis using multiple metrics that offer insights
into different aspects of model behavior. Given the complexity of classifying images into
FIRE, SMOKE, and NON-FIRE categories, we employ accuracy, precision, recall, F1-score,
and the macro-averaged versions of these metrics to comprehensively assess the model’s
performance. This multifaceted approach ensures that both the correct identification of each
class and the minimization of classification errors are addressed, making the evaluation
process rigorous and informative.

Accuracy is a fundamental metric that represents the proportion of correctly classified
images across all three classes. Specifically, it is calculated as the ratio of correctly classified
instances (i.e., the sum of true positives for each class) to the total number of images. While
accuracy provides a general overview of the model’s performance, it may be limited in
its ability to convey class-wise effectiveness, particularly in cases where the dataset is
imbalanced across the three categories. The formula for accuracy is given in Equation (1):

Accuracy =
TPf ire + TPsmoke + TPnon− f ire

Total Number o f Images
(1)

Precision, in a multi-class setting, measures the ability of the model to correctly identify
positive predictions for each class while minimizing false positives. For each class (FIRE,
SMOKE, and NON-FIRE), precision is defined as the ratio of true positive predictions to
the sum of true positive and false positive predictions for that class. High precision across
all classes is essential to reduce false alarms, particularly for the FIRE category, where false
positives can lead to unnecessary disruptions. The macro-averaged precision is calculated
by taking the mean of the precision values across all classes, as shown in Equation (2):

Precisionmacro =
1
3 ∑

c∈{ f ire,smoke,non− f ire}

TPc

TPc + FPc
(2)

Recall, or sensitivity, is a crucial metric for assessing the model’s ability to correctly
identify all positive cases for each class. In our multi-class fire detection problem, recall is
calculated for each class as the ratio of true positive predictions to the sum of true positives
and false negatives for that class. High recall is particularly important for the FIRE class
to minimize the risk of undetected fires. The macro-averaged recall provides an overall
indication of the model’s sensitivity across all classes, as given in Equation (3):

Recallmacro =
1
3 ∑

c∈{ f ire,smoke,non− f ire}

TPc

TPc + FNc
(3)

The F1-score, which is the harmonic mean of precision and recall, is used to balance
the trade-off between these two metrics for each class. In a multi-class setting, the F1-score
for each class is calculated individually, and the macro-averaged F1 score is obtained by
averaging the F1-score across all classes. This metric is particularly useful in scenarios where
both false positives and false negatives carry significant implications, such as avoiding
false alarms while ensuring that fires are detected reliably. The macro-averaged F1-score is
provided in Equation (4):

F1macro =
1
3 ∑

c∈{ f ire,smoke,non− f ire}
2 · Precisionc · Recallc

Precisionc + Recallc
(4)
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By employing these metrics, the evaluation of our proposed model becomes com-
prehensive, ensuring that we assess not only the overall accuracy but also the class-wise
precision, recall, and F1-score. This holistic approach allows us to determine the strengths
and limitations of the model across all relevant classes, ensuring its reliability and effective-
ness in real-world fire detection scenarios.

3.6. Evaluation Methods

To evaluate the effectiveness of our proposed model, we conducted experiments across
various color schemes, pretrained models, and model interpretability methods, aiming for
a comprehensive understanding of model behavior in fire detection scenarios.

We trained and tested the model using multiple color representations, including multi-
channel color spaces (RGB, HSV, YCbCr) and single-channel options (Grayscale, individual
Red, Green, and Blue channels). The purpose of this exploration is to determine the impact
of color information on fire detection performance. For example, RGB retains all primary
color channels, preserving both color and intensity variations, whereas Grayscale removes
color information entirely, emphasizing intensity alone. The HSV color scheme, on the
other hand, focuses on hue and saturation variations, which can aid in distinguishing
flames from other elements. By systematically testing these different representations, we
sought to identify the most informative color scheme for effective fire detection. The RGB
scheme ultimately provided the most comprehensive information for the model, resulting
in superior performance compared to other schemes.

To further validate our model’s effectiveness, we compared its performance against sev-
eral established pretrained models, including VGG16 [24], VGG19 [24], MobileNetV2 [19],
EfficientNetB7 [32], ResNet50V2 [25], Xception [14], DenseNet121 [33], and InceptionV3 [34]
and state-of-the-art fire detection models [17,35,36]. These models are fine-tuned using
the best-performing color scheme (RGB) to ensure consistency in evaluation conditions.
By using identical training and validation datasets, we ensured a fair comparison of the
classification capabilities of each model. This evaluation revealed the strengths of our pro-
posed model, highlighting its robustness and superior accuracy relative to these established
architectures, particularly in scenarios involving complex backgrounds.

To enhance transparency in model predictions, we employed LIME [47] to analyze
feature importance and identify critical regions that influenced classification. LIME is
utilized to understand the key features that drove the model’s decision-making, both
for original and adversarial images. By perturbing input features systematically, LIME
provided insights into how the model localized flame-specific regions effectively, especially
in RGB color space. This visual analysis revealed that the RGB scheme produced the clearest
distinction between fire and non-fire areas, ensuring high interpretability and reliability
in predictions.

The combination of color scheme evaluation, comparison with pretrained models, and
LIME-based interpretability allowed us to thoroughly assess the model’s capabilities and
its ability to focus on relevant fire features, even in challenging conditions. This holistic
approach aims to ensure that our model is not only accurate but also can interpretable and
adaptable to real-world fire detection applications.

4. Results
4.1. Comparison with Baseline Methods

To evaluate the effectiveness of our proposed model, we compare it against well-
established state-of-the-art models [31] using the RGB color scheme, which is identified as
the most effective in our earlier evaluations [31]. The baseline models included commonly
used architectures such as VGG16 [24], VGG19 [24], MobileNetV2 [19], EfficientNetB7 [32],
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ResNet50V2 [25], Xception [14], DenseNet121 [33], and InceptionV3 [34]. All models are
trained and tested on the same Fire-Smoke-Dataset with identical conditions to ensure a
fair comparison.

As presented in Table 1, our proposed model demonstrated superior performance
across all evaluation metrics when compared to these baseline methods. Specifically, our
model achieved a precision of 96%, 0.98%, and 97% for the FIRE, SMOKE, and NON-FIRE
classes, respectively, with an overall macro-averaged precision of 97%. The recall and
F1-score similarly reflected strong performance, with the model achieving a recall of 96%
for Fire and Smoke, and 99% for Neutral, resulting in a macro-averaged recall of 97%. The
overall accuracy of our proposed model reached 97%, indicating a consistent and reliable
performance across all classes.

Table 1. Multi-Class Performance Metrics for Fire, Smoke, and Non-Fire Detection Using the Fire-
Smoke-Dataset.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

VGG16 [24] 0.78 0.78 0.77 0.78
VGG19 [24] 0.80 0.82 0.79 0.81
MobileNetv2 [19] 0.92 0.90 0.93 0.92
EfficientNetB7 [32] 0.82 0.82 0.81 0.81
ResNet50v2 [25] 0.92 0.92 0.91 0.91
Xception [14] 0.91 0.91 0.91 0.91
DenseNet121 [33] 0.92 0.93 0.94 0.93
InceptionV3 [34] 0.92 0.92 0.92 0.92

FireXplainer [17] 0.92 0.91 0.91 0.91
FireXplainNet [35] 0.90 0.90 0.89 0.90
FireDetXplainer [36] 0.91 0.92 0.92 0.92

Ours 0.95 0.95 0.95 0.95

The baseline models, while effective, are outperformed by our proposed model across
all classes. For example, ResNet50V2 and DenseNet121, two of the stronger-performing
baselines, achieved accuracy scores of 92%, which was notably lower than our proposed
model’s 97%. The higher performance of our proposed model can be attributed to the
addition of a channel-wise attention-based module, which enhances feature extraction by
focusing on the most informative aspects of each input, thereby improving classification
accuracy across complex scenarios involving fire, smoke, and neutral scenes. This com-
parison highlights the robustness of our proposed model in handling the complexities of
multi-class fire and smoke detection. By leveraging the RGB color scheme and employing
advanced feature refinement techniques, our model consistently outperformed established
pretrained models, making it a promising solution for real-world fire detection applications
that require high reliability and precision.

4.2. Comparison with State-of-the-Art Methods

We compare the performance of our proposed method against several state-of-the-
art (SOTA) fire detection approaches, including FireXplainer [17], FireXplainNet [35],
and FireDetXplainer [36]. Although these methods have achieved competitive results
in previous studies, they were originally trained and evaluated on different datasets or
configurations. To ensure a fair and consistent comparison, we re-implemented their
architectures based on the descriptions provided in their respective papers, as the official
code implementations are not publicly available. We then trained and tested these replicated
models on our Fire-Smoke-Dataset using the same training, validation, and testing splits,
as well as hyperparameter settings closely matching those described in their publications.
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Table 1 presents the quantitative results of our comparison. The newly added SOTA
methods—FireXplainer, FireXplainNet, and FireDetXplainer—demonstrate strong perfor-
mance in terms of Accuracy, Precision, Recall, and F1-score. Specifically, FireXplainer
attained an F1-score of 0.91, FireXplainNet reached 0.90, and FireDetXplainer achieved 0.92.
Nevertheless, our proposed method outperforms all compared approaches, with an
F1-score of 0.95. This improvement is also consistent across other metrics, indicating the
robustness and generalizability of our framework.

It is important to highlight that minor discrepancies in performance might arise from
inevitable implementation nuances, since we relied on the textual descriptions of the
architectures and hyperparameters for replication. However, the replication effort provides
a controlled setup where all methods are trained under identical conditions. Consequently,
the results in Table 1 indicate that our method offers a superior balance of Accuracy,
Precision, Recall, and F1-score for fire and smoke detection.

4.3. Impact of Augmentation on Fire Detection

To enhance the generalization capabilities of our proposed model, we employed a
range of data augmentation techniques during training. Data augmentation is critical
in deep learning, especially for fire detection tasks, where model robustness depends
on exposure to diverse training examples, such as varying fire intensity, environmental
conditions, and different types of smoke and fire behavior. In our experiments, we utilized
augmentation methods such as random rotations, flips, scaling, and brightness adjustments,
which artificially increased the variability of the training set. These augmented versions
of images are included as part of the training set only, ensuring that the model is exposed
to a wider range of scenarios during training while keeping the validation and test sets
unaffected. The goal is to ensure that our model can effectively generalize across various
real-world conditions, including different lighting scenarios, camera perspectives, and
environmental obstructions.

The impact of data augmentation on model performance is summarized in Table 2.
Overall, augmentation led to notable improvements in precision, recall, and F1-scores
across all classes, contributing to a balanced and high-level performance. Specifically, it
helped the model handle diverse scenarios more effectively by increasing variability in the
training data. Specifically, the model achieved a precision of 96%, 98%, and 97% for the
Fire, Neutral, and Smoke classes, respectively. Recall values are similarly high, with 96%
for Fire, 99% for Neutral, and 96% for Smoke. The F1-score for each class are also consistent,
with 96% for Fire and Smoke, and 99% for Neutral. The macro-averaged precision, recall,
and F1-core are each 97%, indicating a balanced and high-level performance across all
classes. The overall accuracy of the model is 97%, demonstrating the effectiveness of data
augmentation in enhancing classification reliability.

Table 2. Impact of augmentation of trained images on fire detection and classification

Class Precision Recall F1-Score Accuracy

Fire 0.96 0.96 0.96 0.97
Neutral 0.98 0.99 0.99 0.97
Smoke 0.97 0.96 0.96 0.97

Macro avg 0.97 0.97 0.97 0.97
Weighted avg 0.97 0.97 0.97 0.97

The consistent precision and recall across all classes highlight the model’s robustness,
particularly for challenging scenarios such as distinguishing smoke from background
elements or detecting fire under varying environmental conditions. For instance, the
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model’s recall of 99% for the Neutral class suggests that it is highly effective in correctly
identifying non-fire images, thereby reducing the likelihood of false positives. Similarly,
the high precision and recall for the Fire and Smoke classes indicate that the model can
accurately detect fire while minimizing false alarms and missed detections.

4.4. Impact of Color Schemes on Fire Detection

The evaluation of the our proposed model across various color schemes provides sig-
nificant insights, revealing that the RGB scheme offers the highest performance, achieving
an accuracy of 95%, as shown in Table 3. In addition to accuracy, the RGB color scheme also
demonstrated superior precision (95%), recall (95%), and F1-score (95%), clearly outper-
forming other color schemes. This result underscores the importance of leveraging the full
spectrum of color information available in the RGB format for effectively distinguishing
between different classes in fire detection. The intricate variations in fire, influenced by
factors such as material, lighting, and heat, are best represented in RGB, as it captures
subtle color gradients, specific hues, and intensity variations that are crucial for accurate
fire detection, contributing to its superior detection accuracy.

Table 3. Comparation of our approach for fire detection using different color schemes.

Color Scheme Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Grayscale 0.91 0.91 0.93 0.92
HSV 0.92 0.90 0.94 0.92
Ycbcr 0.91 0.92 0.90 0.91
Red 0.90 0.90 0.90 0.90
Blue 0.92 0.89 0.93 0.92
Green 0.92 0.90 0.90 0.90

RGB 0.95 0.95 0.95 0.95

Grayscale and HSV color schemes yielded competitive results in fire detection; how-
ever, their performance metrics, such as accuracy and recall, are consistently lower com-
pared to RGB, which demonstrated a stronger capability in distinguishing flame features
from background elements. Specifically, Grayscale achieved an accuracy of 91%, precision
of 91%, recall of 93%, and an F1-score of 92%. The absence of color information in Grayscale
limits its ability to capture critical color cues, leading to reduced precision in certain sce-
narios. This indicates that intensity information alone, while important, is insufficient for
robust fire detection. The HSV color scheme, on the other hand, achieved an accuracy of
92%, precision of 90%, recall of 94%, and an F1-score of 92%. While effective in capturing
hue and saturation, HSV struggled with subtle distinctions in intensity that are better
captured by RGB (as shown in Figure 3), resulting in marginally lower performance. LIME
visualizations for Grayscale, HSV, and RGB, as shown in Figures 4, 5, and 6, respectively,
further illustrate these observations. The LIME explanations demonstrate that the RGB
color scheme provides a clearer distinction between flame and background regions, which
supports its superior performance. These findings highlight that the additional color cues
provided by RGB are essential for nuanced classification across fire, smoke, and natural
scenes. The RGB color scheme, being the highest performing, are used for further evalua-
tion and comparison with well-established pretrained models to ensure consistency and
reliability in assessing model effectiveness.
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Figure 3. LIME visualizations in the RGB color space highlighting regions with the highest influence
on fire detection predictions in representative images.

Figure 4. LIME visualizations in the Grayscale color space highlighting regions with the highest
influence on fire detection predictions in representative images.

Figure 5. LIME visualizations in the HSV color space highlighting regions with the highest influence
on fire detection predictions in representative images.

Figure 6. LIME visualizations in the YCbCr color space highlighting regions with the highest influence
on fire detection predictions in representative images.

4.5. Adversarial Attack Vulnerability

The Fast Gradient Sign Method (FGSM) [28] was employed to systematically assess
the model’s robustness to adversarial perturbations, revealing significant performance
variations under controlled attack conditions. Table 4 summarizes the quantitative impact
of adversarial attacks on model classification performance. The introduction of FGSM
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perturbations resulted in a substantial reduction of overall accuracy from 95% to 41%.
Precision metrics demonstrated considerable variability across classes, with Fire class
precision declining to 0.37, Non-fire class to 0.41, and Smoke class to 0.45. Correspondingly,
recall values exhibited similar degradation, indicating compromised feature discrimination
under adversarial conditions.

Table 4. Impact of adversarial attacks on fire detection and classification.

Class Precision Recall F1-Score Accuracy

Fire 0.37 0.25 0.30 0.41
Non-fire 0.41 0.77 0.54 0.41
Smoke 0.45 0.21 0.29 0.41

Macro avg 0.41 0.41 0.38 0.41
Weighted avg 0.41 0.41 0.38 0.41

LIME visualization techniques provided interpretable insights into the model’s
decision-making processes across different color representations. Figures 7–10 illustrate
the shifts in feature attention induced by adversarial perturbations. Comparative anal-
ysis across color spaces revealed consistent patterns of feature attention disruption. In
the original image space, LIME highlighted flame-specific regions with high specificity,
while under FGSM perturbations, the saliency maps demonstrated significant redistribu-
tion of attention, with the model’s focus transitioning from flame-characteristic regions to
peripheral image elements. The RGB color space exhibited the most pronounced misclassi-
fication patterns, with subtle input modifications substantially altering the model’s feature
extraction mechanisms.

Figure 7. LIME saliency maps in RGB showing misclassifications from FGSM perturbations as focus
shifts from flame regions.

Figure 8. LIME saliency maps in Grayscale illustrating misclassification due to attention shifts under
FGSM perturbations.
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Figure 9. LIME saliency maps in HSV illustrating misclassification due to attention shifts under
FGSM perturbations.

Figure 10. LIME saliency maps highlighting critical YCbCr regions influencing fire detection, showing
misclassification patterns caused by FGSM-induced focus shifts.

4.6. Model Explainability with LIME

We utilized LIME to evaluate the interpretability of our fire detection model by an-
alyzing both original and adversarially attacked images. This approach allowed us to
visually understand which features are most influential in the model’s predictions under
different conditions.

To thoroughly assess the model’s behavior, we generated LIME visualizations for both
original and adversarial images across various color schemes (e.g., RGB, Grayscale, HSV,
and YCbCr). For the original images, LIME effectively highlighted regions corresponding
to flame-specific features, especially in the RGB color scheme, as shown in Figures 3–6.
The visualizations showed that the model primarily focused on areas with intense red
and orange hues, which are characteristic of flames. This indicates that the model can
reliably localize relevant fire features in the RGB space, ensuring high interpretability. The
LIME visualizations in Figure 3 demonstrate our model’s capability to simultaneously
detect both fire and smoke features. In the first image, while the model identifies intense
flame regions (shown by yellow highlights near the base), it also captures the rising
smoke patterns above the fire. The second image shows how the model distinguishes
between active flame zones and surrounding smoke diffusion patterns, with attention
regions appropriately weighted based on feature intensity. The third image particularly
highlights the model’s ability to differentiate smoke’s diffuse characteristics from the more
concentrated fire regions, showing how channel-wise attention helps maintain distinct
feature identification even when fire and smoke coexist in complex scenes. However, the
Grayscale scheme, as well as other color schemes like HSV and YCbCr, produced broader
and less distinct highlighted regions, demonstrating limitations in capturing the nuanced
details that the model used to make predictions. This inconsistency in the identification
of flame-specific areas across different color schemes suggests that RGB provides a more
robust representation for localizing fire features. For adversarially perturbed images (using
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FGSM), LIME visualizations revealed significant changes in the model’s focus, as shown
in the Figures 7–10. The highlighted regions often shifted to irrelevant areas, such as
background objects or non-flame regions, particularly in the RGB and HSV color spaces.
This misdirection indicates the model’s susceptibility to adversarial noise, as it failed to
consistently identify key features indicative of fire. The Grayscale and YCbCr visualizations
exhibited similar disruptions, with less consistent and more diffuse areas of importance
compared to original images.

The visualizations provide a comparative view of the model’s interpretability under
original and adversarial conditions. In RGB, the saliency maps for original images are
clear and focused on flame regions, supporting accurate predictions. Under adversarial
conditions, however, the saliency maps became dispersed and misleading, demonstrating
reduced reliability. HSV and YCbCr provided moderate results, capturing some important
features but lacking the precision observed in RGB.

These findings emphasize the need for enhancing the model’s robustness against
adversarial attacks. The visual evidence provided by LIME demonstrates that although
the model performs well on original data, its reliability significantly diminishes under
adversarial perturbations. This emphasizes the critical need for enhancing the model’s
robustness against such attacks.

4.7. Ablation Study

To validate the effectiveness of our proposed channel-wise attention mechanism in fire
detection, we conducted comprehensive ablation experiments. As each channel of a feature
map is considered as a feature detector [46], channel-wise attention focuses on ’what’ is
meaningful given an input image. We follow similar principles described in attention litera-
ture where channel relationships are explicitly modeled to enhance feature representation.

As shown in Table 5, the channel-wise attention mechanism provides substantial
improvements over the baseline architecture. While the baseline MobileNetV2 achieves
0.92 accuracy, our channel-wise attention module enhances performance to 0.95 accuracy
by adaptively recalibrating channel-wise feature responses. The attention mechanism helps
the model focus on informative feature channels while suppressing less useful ones, leading
to more effective feature refinement.

Table 5. Impact of channel-wise attention mechanism on fire detection performance.

Model Accuracy Precision Recall F1-Score

MobileNetV2 0.92 0.90 0.93 0.92
MobileNetV2 + Attention 0.95 0.95 0.95 0.95

The performance improvement is consistent across all metrics, with both precision
and recall increasing to 0.95, indicating that our channel-wise attention mechanism ef-
fectively helps the network concentrate on meaningful fire-specific features. This bal-
anced improvement demonstrates that the feature refinement through channel-wise atten-
tion not only helps identify more fire instances correctly but also reduces false positives,
which is crucial for reliable fire detection systems. These ablation results validate our
architectural choice and demonstrate that explicitly modeling interdependencies between
channels through attention improves the fire detection performance while maintaining
computational efficiency.

5. Discussion
Our comprehensive analysis of fire detection using a channel-wise attention-based

MobileNetV2 architecture revealed critical insights into model performance, generalization,
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and robustness. The training dynamics, illustrated in the Figure 11, provide a nuanced
view of our model’s learning progression and its ability to generalize across diverse fire
detection scenarios. The training accuracy steadily increased from 82% at the first epoch to
95% by the tenth epoch, while the validation accuracy followed a similar trend, reaching
94% by the end of training. The close alignment between training and validation accuracy
curves, both progressively improving and stabilizing around high values, suggests strong
generalization to unseen data without signs of overfitting. Avoiding overfitting is partic-
ularly important for real-world fire detection scenarios, where the model must maintain
high performance across a variety of environments and conditions that differ from the
training data. Additionally, the training and validation loss decreased consistently, with
the training loss dropping from 0.40 to 0.05 and the validation loss reducing from 0.42 to
0.06 over the ten epochs. The minimal divergence between the training and validation loss
curves supports the robustness of the model, as both losses remained consistently low and
converged smoothly. These findings collectively demonstrate that our proposed model
maintains high predictive performance across different datasets and color schemes, making
it a reliable solution for real-world fire detection applications.

Figure 11. Training and validation accuracy and loss over 10 epochs.

Data augmentation emerged as a critical strategy for enhancing model generalizability.
Our experiments demonstrated that techniques including rotations, scaling, and bright-
ness adjustments increased overall accuracy by 7%, effectively mitigating overfitting in
challenging scenarios with occlusions and varied lighting conditions. The augmentation
approach addresses fundamental challenges in fire detection by artificially expanding the
training data’s variability. This enables the model to adapt more effectively to real-world
environmental complexities, particularly in scenarios with diverse fire intensities, smoke
patterns, and background conditions. Comparative analysis with baseline models, such
as VGG16, ResNet50V2, and EfficientNetB7, validated the efficacy of our augmentation
strategy. Our attention-augmented MobileNetV2 outperformed these architectures by up
to 8% in accuracy, highlighting the potential of sophisticated data augmentation techniques
(as shown in the Table 2).

The comprehensive evaluation across different color spaces revealed critical insights
into feature representation. The RGB color scheme consistently outperformed alternative
representations, achieving 95% accuracy compared to other color spaces’ 90–92% perfor-
mance. This superiority stems from RGB’s ability to capture comprehensive color and
intensity variations crucial for distinguishing flame characteristics. Our analysis showed
that while Grayscale and HSV schemes provided competitive results, they struggled to
capture the nuanced visual cues essential for accurate fire detection. The RGB scheme’s
ability to preserve subtle color gradients and intensity variations proved instrumental in
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differentiating fire from complex backgrounds. LIME visualizations further substantiated
these findings, demonstrating that the RGB color space provides the clearest distinction
between flame and non-flame regions, underscoring the importance of color information in
developing robust fire detection models (as shown in the Figures 3–6). The ablation study
results further validate our architectural choices, demonstrating that the channel-wise atten-
tion mechanism contributes significantly to the model’s performance. The 3% improvement
in accuracy from adding channel-wise attention confirms the mechanism’s effectiveness in
focusing on flame-specific and smoke features while suppressing background noise.

The investigation into adversarial vulnerabilities revealed significant challenges in
deploying deep learning models for safety-critical fire detection applications. FGSM attacks
demonstrated a dramatic performance reduction from 95% to 41% accuracy, highlighting
the model’s susceptibility to minimal input perturbations (as shown in the Table 4). LIME
visualizations provided critical insights into these vulnerabilities, showing how adversarial
attacks can fundamentally alter the model’s feature attention mechanisms (as depicted in
the Figures 7–10). Under perturbation, the model’s focus shifted from flame-specific regions
to irrelevant background elements, exposing potential weaknesses in current deep learning
approaches. This analysis underscores the need for developing more robust detection
systems capable of maintaining consistent performance under diverse and potentially
manipulated input conditions. The findings contribute to the broader research discourse
on adversarial resilience in computer vision applications.

The interconnected insights from training dynamics, augmentation, color space anal-
ysis, and adversarial vulnerability assessment highlight the complex challenges in de-
veloping reliable fire detection systems. Our approach demonstrates that addressing
these challenges requires a multifaceted strategy involving sophisticated feature extraction,
comprehensive training techniques, and rigorous robustness evaluation. The channel-
wise attention mechanism, combined with careful data augmentation and color space
selection, provides a promising pathway for enhancing fire detection model performance
and reliability.

6. Conclusions
This study comprehensively evaluates model interpretability and adversarial vulnera-

bilities in fire detection through channel-wise attention-based MobileNetV2 architecture.
Our systematic analysis yielded several key insights: (i) Channel-wise attention mecha-
nisms significantly enhance feature discrimination, enabling the model to effectively filter
background noise while maintaining focus on flame-relevant regions; (ii) Data augmenta-
tion techniques substantially improve model generalization, achieving 97% accuracy across
precision, recall, and F1-score metrics by exposing the model to diverse environmental
conditions; (iii) The RGB color scheme provides optimal performance with 95% accuracy,
demonstrating the importance of comprehensive color information for distinguishing
flame-specific features.

Our analysis of adversarial vulnerabilities revealed critical security considerations for
deploying deep learning models in fire detection systems. FGSM perturbations caused
significant performance degradation, reducing accuracy to 41%. LIME visualizations
demonstrated how adversarial attacks shift the model’s attention from flame regions to
irrelevant background elements, highlighting the need for enhanced robustness in safety-
critical applications. These findings underscore the importance of comprehensive security
evaluation before deploying such systems in real-world scenarios.

Future work will focus on enhancing model resilience to adversarial attacks through
domain-adaptive training methods, such as Bilateral Adversarial Training (BAT) [50], to
ensure robust performance across varying noise levels and environmental conditions.
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Additionally, we plan to investigate advanced Vision-Language Models (VLMs), including
CLIP [51] for improved image-text alignment, Flamingo [52] for few-shot adaptation in
diverse environments, and multimodal capabilities of GPT-4 [53] and LLaMA 3.2 [54] to
enhance real-time scene understanding and context-aware detection. These models, known
for their success in medical diagnostics [55] and autonomous driving [56], can allow fire
detection systems to better discern flame characteristics amidst complex backgrounds.
For augmentation, we will incorporate techniques including Gaussian noise injection [57],
elastic transformations [58], blur, and color jittering [59] to replicate challenging real-world
conditions, such as smoke interference, variable fire intensities, and adverse weather.
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