
52 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 12, NO. 1, FEBRUARY 2010

Performance Impact of Large File Transfer on Web Proxy
Caching: A Case Study in a High Bandwidth Campus

Network Environment
Hyun-Chul Kim, Dongman Lee, Kilnam Chon, Beakcheol Jang, Taekyoung Kwon, and Yanghee Choi

Abstract: Since large objects consume substantial resources, web
proxy caching incurs a fundamental trade-off between perfor-
mance (i.e., hit-ratio and latency) and overhead (i.e., resource us-
age), in terms of caching and relaying large objects to users. This
paper investigates how and to what extent the current dedicated-
server based web proxy caching scheme is affected by large file
transfers in a high bandwidth campus network environment. We
use a series of trace-based performance analyses and profiling
of various resource components in our experimental squid proxy
cache server. Large file transfers often overwhelm our cache server.
This causes a bottleneck in a web network, by saturating the net-
work bandwidth of the cache server. Due to the requests for large
objects, response times required for delivery of concurrently re-
quested small objects increase, by a factor as high as a few million,
in the worst cases. We argue that this cache bandwidth bottleneck
problem is due to the fundamental limitations of the current cen-
tralized web proxy caching model that scales poorly when there are
a limited amount of dedicated resources. This is a serious threat
to the viability of the current web proxy caching model, particu-
larly in a high bandwidth access network, since it leads to sporadic
disconnections of the downstream access network from the global
web network. We propose a peer-to-peer cooperative web caching
scheme to address the cache bandwidth bottleneck problem. We
show that it performs the task of caching and delivery of large ob-
jects in an efficient and cost-effective manner, without generating
significant overheads for participating peers.

Index Terms: Peer-to-peer, performance measurement, web cache,
workload characterization.

I. INTRODUCTION

Web proxy caching is one of the most popular techniques
to facilitate information sharing on the Internet. As with other
forms of caching used at various levels of the memory hierar-
chy (e.g., hardware, operating systems, application), web proxy
caching exploits the reference locality principle to improve the

Manuscript received February 06, 2008; approved for publication by Hyunse-
ung Choo, Division III Editor, August 05, 2009.

This work was financially supported by NAP of Korea Research Council of
Fundamental Science and Technology and the grant from the IT R&D program
of MKE/IITA [2007-F-038-03, Fundamental Technologies for the Future Inter-
net].

H.-C. Kim, T. Kwon, and Y. Choi are with the School of Computer Science
and Engineering, Seoul National University, Seoul, South Korea, email: {hkim,
tk, yhchoi}@mmlab.snu.ac.kr.

D. Lee is with the Department of Computer Science, Korea Advanced Institute
of Science and Technology, Daejeon, South Korea, email: dlee@cs.kaist.ac.kr.

K. Chon is with the Graduate School of Media and Governance, Keio Univer-
sity, Japan, email: chonkn@gmail.com.

B. Jang is with the Department of Computer Science, North Carolina State
University, Raleigh, USA, email: bcjang@gmail.com.

cost and performance of data access [1]. This approach has been
especially effective for the Internet, where large geographic and
topological distances separate the content producers and con-
sumers.

From the outset, one of the challenges for web proxy caching
has been efficient handling of variable-sized web objects [2]
with only a limited amount of dedicated resource. The size of
web files spans several orders of magnitude and its distribution
is heavy-tailed. Explicit support for multimedia formats on the
web has led to a significant increase in web file size, thereby
increasing the tail weight of the size distribution [2]–[4]. The
development of compression techniques, such as MPEGs, and
gigantic archives of scientific data sets has made the challenge
more difficult and urgent. As the network provides higher band-
width than before1 and content providers redesign their sites to
support users with high-speed access, users are more likely to
regularly download all kinds of very large objects [2], [5].

This widespread increase in the transfer of large objects has a
significant impact on the web, as well as its underlying network
infrastructure [2]. For instance, intense bursts of web traffic are
more frequently caused by concurrent requests for large objects,
rather than a large number of requests for small objects [6],
placing even more load on web proxy caches. However, to the
best of our knowledge, there has been no work that measures
and quantifies the impact of large objects on the performance
of web proxy caching, though the proliferation of large object
downloads may make web proxy caching a bottleneck in a high
bandwidth network.

This paper presents a case study questioning the viability
of the current (centralized) web proxy caching model in a
high bandwidth network environment, in which end users often
download large web objects. We conduct a systematic study that
quantifies the impact of large object transfer on the performance
of our experimental squid [7] cache server.

Our contributions are two-fold: First, this is the first study that
performs a thorough trace-based analysis on the impact of large
object transfer on web caching performance in a high bandwidth
network environment, in terms of a cache’s bandwidth usage and
response times. We use real-world web cache traces collected at
two high bandwidth campus networks, in two countries with the
highest broadband and fiber-to-the-home (FTTH) penetration in
the world; Japan and Korea. Even a small number of concurrent
requests for large objects often saturates our web proxy cache’s

1With the rapid growth of IP networking technologies, it is common for to-
day’s local/regional area networks, as well as domestic/international research
networks, to have more than 100 Mb/s of user connectivity and 1 Gb/s-class
backbone [8].

1229-2370/10/$10.00 c© 2010 KICS

KIM et al.: PERFORMANCE IMPACT OF LARGE FILE TRANSFER ON WEB PROXY... 53

bandwidth resource and causes significant performance degra-
dation in a high bandwidth network environment. Due to the
delivery of large objects, comprising less than 0.1% of the total
number of requests, approximately 30% of concurrent requests
for small objects are delayed. During peak-times, the (worst
case) response time required for delivery of small objects in-
creases by a factor as high as a few million. We argue that the
bandwidth bottleneck problem is due to the fundamental limi-
tations of the current centralized web proxy caching model that
scales poorly when there is a limited amount of dedicated re-
source. This is a serious threat to the viability of the current web
proxy caching model, particularly in a high bandwidth access
network, since it actually leads to sporadic disconnection of the
downstream access network from the global web network.

Second, we address the bottleneck problem by proposing a
peer-to-peer cooperative web caching scheme. We show that the
proposed scheme performs the task of caching and delivery of
large objects in an efficient and cost-effective manner, without
generating significant overheads for participating peers.

The remainder of this paper is structured as follows:
Section II explains our cache traces and performance evalua-
tion methodologies. In Section III, we empirically show the ex-
tent to which large object transfers affect the performance of
cache servers in handling requests for the other concurrent small
objects. To address the cache bandwidth bottleneck problem,
Section IV proposes a peer-to-peer cooperative web caching
scheme and evaluates its performance. Section V discusses re-
lated work. We conclude this paper in Section VI.

II. EXPERIMENTAL METHODOLOGY

In this section, we discuss the details of the collected trace
workloads, describe our experimental environment and detail
the performance metrics used in the experimental evaluation.

A. Access Characteristics of Large Objects

We employed traces from leaf university caches, at KAIST
campus network in South Korea and Waseda University’s Nishi-
waseda campus and Toyama campus network in Japan to gen-
erate the workload.2 End users in KAIST and Waseda are pro-
vided with 10/100 Mb/s or 1 Gb/s switched Ethernet connectiv-
ity. Table 1 summarizes the trace information. All traces were
collected over four days. Each consisted of tens of million re-
quests, generated by a population of several thousand clients. It
also shows the proportion of the number of requests for large ob-
jects, in terms of access counts and transferred bytes, per trace.3

In both traces, the traffic volume by objects larger than 1 MB
comprised about 30–50% of the total traffic, though the num-
ber of these requests was less than 1% in terms of the access

2These traces are the most recent leaf (university) cache traces available to
us, since the cache servers had been dismantled in mid-2000s. There were no
publicly available leaf cache traces collected in 2004–2009 either. We admit that
our traces, collected in 2002 and 2003, may look old-fashioned, however, even if
we used more recent traces, it would not affect what we find in this paper; even a
small number of large file transfers often saturates our cache servers’ bandwidth
resource and significantly degrade its performance, since the number of requests
for large objects and transfers are obviously increasing as time goes by [2], [5].

3Since the size of multimedia objects such as video, audio, and high-definition
image data typically ranges from a few Megabytes to a few Gigabytes, this paper
assumed that objects larger than 1 MB are large.

Table 1. Characteristics of trace workload.

Trace KAIST Waseda
Duration 2002.6.7–10 (96 hr.) 2003.12.9–12 (96 hr.)

of requests 39.4 M 24.7 M
Transferred bytes 375 GB 193 GB
of unique clients 8,798 3,147

% of requests > 1 MB (count/byte ratio) 0.06/47.3 0.04/28.2
% of requests > 10 MB (count/byte ratio) 0.006/32.8 0.004/13.9

% of requests > 100 MB (count/byte ratio) 0.0009/17.7 0.0001/2.3
% of requests > 1 GB (count/byte ratio) None None

Size of the largest object 681 MB 652 MB

Fig. 1. Experimental environment.

count. The results are consistent with Jung et al. [4], except
that the proportion of traffic generated by objects larger than
10 MB in the KAIST trace has increased by more than a factor
of three over the past three years (from 10% to 30%). This is
likely due to the recent proliferation of high quality video data
and large compressed files on the Internet. It appears that the
size of large objects has been increasing on the web, especially
where broadband access networks are widely deployed. Though
the Waseda trace contains a relatively smaller proportion of re-
quests for large objects, the results are also consistent with Jung
et al. [4].

Here, we show the potential count hit-ratio and byte hit-ratio
due to caching objects larger than 1 MB per trace. We consider-
ed an object to be cacheable if it did not contain substrings such
as ‘cgi-bin’ or ‘?’ and if it did not have a file extension such
as ‘.cgi,’ as in [4] and squid [7]. All uncacheable objects were
counted as cache misses, as with [4]. According to our anal-
ysis, some large multimedia objects are extremely popular. A
few video files were accessed thousands of times, and tens of
multimedia objects were accessed hundreds of times during the
trace collection periods. For each KAIST and Waseda trace, po-
tentially 42.1% and 24.8% of the byte hit-ratio and 53.6% and
25.5% of the count hit-ratio, respectively, could have been due
to caching of objects larger than 1 MB. This indicates (i) the lo-
cality of large multimedia objects is significantly high in both
traces and (ii) even a single cache-miss for an extremely large
object may require a large volume of traffic to be fetched from its
distant original web server [9]. Therefore, large objects should
be cached, to reduce network bandwidth usage significantly. In
Section IV, we investigate how and to what extent caching and
delivery of large objects directly affects the performance of web
caching.

B. Experimental Environment

Fig. 1 illustrates the experimental environment. We used pop-
ular open source codes, proxycizer [10], squid [7], and dum-
mynet [11]. One of the most popular open-source cache server
software, squid is known to comprise at least 80% of the caching

54 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 12, NO. 1, FEBRUARY 2010

proxy market in Europe, and about 70% in the US [12]. The
proxycizer package, a suite of simulation tools that can be used
in simulating and/or driving web caches developed at Duke
university, was used to perform trace-driven workload gener-
ation. Among various tools included in the package, we used
simclient to stream requests to the squid web cache. It gener-
ates a real-time request stream given in a real-world trace. For
the server side, webulator, a non-blocking http server that re-
turns objects on request was used. It returns objects based on
the information from a database generated from a real-world
trace (i.e., using the length field to determine the length of a
requested object). Squid was used as a web caching compo-
nent. We used dummynet to emulate the communication delay
and bandwidth limitations. In dummynet, the features of an emu-
lated network are generally controlled and configured via a com-
mand line interface.

We conducted experiments on three PCs. One was an Intel PC
server implementing the squid cache server, with 2 GHz Pen-
tium 4 CPU, 2 GB RAM, and 1 Gb/s Ethernet NIC. The other
two implemented simclient and the emulated web server, we-
bulator, respectively. They had 2 GHz Pentium 4 CPU, 1 GB
RAM, and 1 Gb/s Ethernet NIC. Squid’s cache space was con-
figured to 100 GB. The cache server’s bandwidth was set to
1 b/s, as in the KAIST and Waseda web caches.4

We set the client-cache round trip time to 1 millisecond, based
on the round trip time measurement results obtained at the
KAIST campus network. We set the upstream bandwidth of the
cache server to 100 Mb/s, based on the reports generated from
the FlowScan+ system that monitors the flow information at the
KAIST campus network border router. We set the cache-server
round trip time to 10 milliseconds, since 70–80% of HTTP re-
quests for large objects logged at the KAIST trace workloads
were directed to domestic web servers located in South Korea.
The Waseda trace showed a similar pattern; around 60–70% of
requests were directed to domestic web servers for which the
country code top level domain (ccTLD) is jp.

We ignored packet losses and delay variability. These assum-
ptions are acceptable (previous studies on the performance of
web caches have also made similar assumptions [5], [13]), since
we were interested in a web cache server’s characteristics in
a high bandwidth access network where large objects are fre-
quently requested, rather than the effects of various Internet dy-
namics on these workloads.

C. Data Reduction and Performance Metrics

We created a smaller, more compact log due to the extremely
large access logs created by caches (nearly 10 GB of data in to-
tal). This enabled us to complete our workload re-generation and
analyses in real-time. To this end, we used one day’s workload
per trace, instead of all trace workloads. Two criteria were used
for the selection of the trace: First, we selected a workload in
which both the number of requests for large objects and the vol-
ume of traffic generated by these requests was greatest among

4Japan, Korea, Hong Kong, and much of Europe already lead the United
States in FTTH deployments, with a number of other nations now accelerating
their own FTTH efforts. A 100 Mb/s connection capable of supporting conver-
gence of voice, video, and very high speed bi-directional data is now common
in Japan, Korea, and Hong Kong. It will soon be available in a number of other
countries [14].

Table 2. Characteristics of the selected trace workload.

Trace KAIST Waseda
Duration 2002.6.9 (24 hr.) 2003.12.11 (24 hr.)

of requests 7.38 M 5.61 M
Transferred bytes 79 GB 42 GB
of unique clients 5,633 2,186

% of requests > 1 MB (count/byte ratio) 0.08/55.5 0.05/32.3
% of requests > 10 MB (count/byte ratio) 0.008/41.1 0.004/20.4

% of requests > 100 MB (count/byte ratio) 0.001/24.6 0.0009/6.2
% of requests > 1 GB (count/byte ratio) None None

Size of the large object 681 MB 231 MB

the collected traces. This enabled us to determine to what extent
requests for large objects can generate overhead for the cache
server. Second, we selected a workload for which the total num-
ber of requests was sufficiently small to ensure that loads gener-
ated by small objects delivery were as low as possible. By this
means, we aim to show the impact of large object delivery on
the performance of web caching more clearly.

Table 2 shows the characteristics of the selected traces. In
both the KAIST and Waseda traces, the proportion of the num-
ber of requests and the volume of traffic for large objects is
larger than those of the four day average, shown in Table 1.

There are no object replacement or removal operations dur-
ing the experiments, since the total volume of transferred bytes
is less than the cache storage space (100 GB) in both traces. This
is acceptable for our experiments, since we focus on the direct
impact of large object transfers—particularly through our exper-
imental web cache—on the delivery performance of other small
objects concurrently transferred to users, rather than the impact
of replacement or removal operations related to large objects
that have been cached in the cache server, on the performance
of web caching.

We made three different versions of the selected traces and
compared the results obtained for each to measure and quantify
the impact of large object delivery on the performance of our
squid web proxy cache. The first is the real-world trace that con-
tains all requests for large objects (> 1 MB). The second con-
tains no such requests. The third is an intermediate one, where
requests for objects larger than 10 MB are eliminated from the
original trace. We used two different metrics, cache bandwidth
usage and response times required for delivery of small objects
for the comparison. The former is defined as the volume of data
that passes through a web cache per unit time (one second). The
latter is defined to be the time required for the cache server to
service the request. From the experimental results, we intended
to answer the following questions. This allows us to determine
the load on our experimental web cache server due to concurrent
requests for large objects:

1. To what extent do the requests for large objects contribute
to generating peak web traffic?

2. Does the traffic generated by large objects affect and delay
concurrently requested small objects? If so, to what extent?

3. What is the threshold size of large objects that generate sig-
nificant overheads for the experimental 1 Gb/s web cache?

4. Why are small file transfers affected by concurrent large file
transfers? Which is the bottleneck resource?

The following section addresses these questions.

KIM et al.: PERFORMANCE IMPACT OF LARGE FILE TRANSFER ON WEB PROXY... 55

III. IMPACT OF LARGE FILE TRANSFERS ON WEB
PROXY CACHING PERFORMANCE

This section presents the impact of large file transfers on our
squid web proxy cache, by answering the aforementioned four
questions.

A. Impact on Cache Bandwidth Usage

In this subsection, we examine the impact of large object de-
livery on cache bandwidth usage. To this end, we calculated the
average transfer rate of all transferred objects per second, based
on the cache log data, for instance, the object size, request arrival
time, and response times, recorded in the squid log file. Then,
we obtained the cache bandwidth usage per second, by summing
the transfer rates of all objects transferred at the time. Fig. 2
plots the cumulative distribution function of the cache band-
width usage per selected trace, for KAIST and Waseda Univer-
sity, respectively.

The figures show that the cache bandwidth usage exhibits
heavier tailed characteristics with requests for large objects. In
Fig. 2(a), without requests for objects larger than 1 MB, the 90th
percentile, 99th percentile, and peak of the cache bandwidth us-
age are 11.4 Mb/s, 22.7 Mb/s, and 64.0 Mb/s, respectively. The
average bandwidth usage is 5.7 Mb/s. It is clear that the cache’s
1 Gb/s bandwidth resource is under-utilized throughout the ex-
periment, with 7.38 million requests for small objects.

However, as the trace includes an additional few thousand
requests for objects for which the size is between 1 MB and
10 MB, the 90th percentile, 99th percentile, and peak of the
cache bandwidth usage increases to 15.2 Mb/s (1.4x), 53.1 Mb/s
(2.4x), and 289.0 Mb/s (4.5x), respectively. The average band-
width usage increases to 7.8 Mb/s (1.3x). In the next step, as
the trace includes more requests for objects larger than 10 MB
for which the access count comprises only 0.008% of the trace,
the 90th percentile, 99th percentile, and peak of the cache band-
width usage increases to 40.3 Mb/s (3.5x), 99.5 Mb/s (4.4x), and
698.7 Mb/s (10.1x), respectively. The average bandwidth usage
increases to 14.7 Mb/s (2.5x).

We obtained similar results with the Waseda trace, as shown
in Fig. 2(b). The volume of increased bandwidth usage due to
requests for large objects was relatively smaller than that of the
KAIST trace. Without requests for objects larger than 1 MB, the
90th percentile, 99th percentile, and peak of the cache band-
width usage were 7.5 Mb/s, 18.8 Mb/s, and 86.9 Mb/s, respec-
tively. The average bandwidth usage was 3.1 Mb/s. As with the
aforementioned case, the cache’s bandwidth resource is under-
utilized throughout the experiment. As the trace includes addi-
tional requests for objects for which the size is between 1 MB
and 10 MB, the 90th percentile, 99th percentile, and peak of the
cache bandwidth usage increases to 7.9 Mb/s (1.1x), 32.3 Mb/s
(1.7x), and 220.9 Mb/s (2.5x) respectively. The average band-
width usage was 3.7 Mb/s (1.2x). In the next step, as the trace
includes more requests for objects larger than 10 MB for which
the access count comprises only 0.004% of the Waseda trace,
the 90th percentile, 99th percentile, and peak of the cache band-
width usage increase to 8.2 Mb/s (1.1x), 43.0 Mb/s (2.3x), and
672.1 Mb/s (7.7x), respectively. The average bandwidth usage
increases to 4.1 Mb/s (1.3x). Table 3 summarizes the results.

(a)

(b)

Fig. 2. CDF of cache bandwidth usage with and without requests for
large objects: (a) KAIST trace and (b) Waseda trace.

To summarize, the number of requests for large objects sub-
stantially increases, and governs the volume of the peak cache
bandwidth usage (i.e., peak web traffic) in a high bandwidth ac-
cess network, though it comprises less than 0.1% of the total
access count. Without requests for objects larger than 1 MB, the
peak volume of traffic that passes through our experimental web
cache server decreases significantly, by 76–86%.

Here, we investigate what objects significantly contribute to
peak traffic and to what extent. The aim of this investigation is
to determine the threshold size of large objects that generates
significant bandwidth overhead for a 1 Gb/s web cache.

To this end, all requested objects were categorized in four
groups according to their size; less than 1 MB, O(1) MB,
O(10) MB, and O(100) MB. Each group was further divided
into two subgroups; cache-hit and cache-miss. Then, for each
group of objects, we calculated and summed the transfer rate of
concurrently delivered objects, per second. Finally, we obtained
the volume of the greatest peak traffic generated by each group

56 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 12, NO. 1, FEBRUARY 2010

Table 3. Cache bandwidth usage with and without request for large objects.

Trace contains requests for Cache bandwidth usage (Mb/s)
KAIST trace Waseda trace

90th kv. 99th kv. Peak Avg. 90th kv. 99th kv. Peak Avg.
Objects smaller than 1 MB only 11.4 22.7 64.0 5.7 7.5 18.8 86.9 3.1
Objects smaller than 10 MB only 15.2 53.1 289.0 7.8 7.9 32.3 220.9 3.7
All objects (the original traces) 40.3 99.5 698.7 14.7 8.2 43.0 672.1 4.1

Table 4. The volume of peak traffic generated by each group of large objects, categorized according to object size.

Size of requested objects
Smaller than 1 MB Between 1 MB and 10 MB Between 10 MB and 100 MB Larger than 100 MB

KAIST
Cache hit 39.1 Mb/s(143 req.) 197.5 Mb/s (3 req.) 332.2 Mb/s (1 req.) 652.3 Mb/s (1 req.)

Cache miss 51.0 Mb/s (20 req.) 109.8 Mb/s (3 req.) 168.3 Mb/s (6 req.) 80.2 Mb/s (3 req.)

Waseda
Cache hit 39.0 Mb/s (116 req.) 219.3 Mb/s (5 req.) 355.2 Mb/s (1 req.) 668.1 Mb/s (1 req.)

Cache miss 85.6 Mb/s (15 req.) 122.5 Mb/s (3 req.) 99.1 Mb/s (2 req.) 35.3 Mb/s (1 req.)

Table 5. Average and max latency taken to deliver small objects with

and without requests for large objects.

Trace contains requests for KAIST Waseda
Objects smaller than 1 MB 14.3 ms / 12.9 sec 21.7 ms / 900.0 sec
Objects smaller than 10 MB 21.3 ms / 19.2 sec 32.4 ms / 1681.9 sec

All objects (real trace) 572.8 ms / 716.2 sec 1,503 ms / 2,591 sec

of objects. Table 4 summarizes the results.
For each entry of peak traffic in the table, the number of

requests for similar-sized objects is shown in parentheses. As
shown in the table, the volume of traffic generated by concurrent
requests for small objects is at most 39.0–85.6 Mb/s, whereas
only a few concurrent requests for large objects often generates
200 Mb/s or more of traffic. This begins to saturate the cache
server’s bandwidth resource. As expected, the missed requests
for large objects do not generate many traffic surges, compared
with the hit ones.

On a high bandwidth access network, even a single hit request
for an object for which the size is tens or hundreds of MB of-
ten causes a traffic spike, and starts to saturate the bandwidth
resource of a 1 Gb/s cache server, while missed requests for
similar-sized objects do not. Only a few concurrent hit requests
for objects for which the size is between 1 MB and 10 MB,
such as MP3 audio files, also generate relatively high traffic for
a 1 Gb/s cache server. The greater the number of downstream
clients a cache server has, the higher the probability that they
make concurrent requests for large objects. That is, the greater
the user population serviced by a cache server, the greater the
extent to which a cache server is affected by the bandwidth sat-
uration problem.

B. Impact on Response Times

In this subsection, we examine the impact of large object de-
livery on the performance of web caching. To this end, we com-
puted and compared the response time required for our cache
server to deliver small objects for which the size is less than
1 MB to clients, with and without concurrent requests for large
objects, respectively. Table 5 shows the average and worse case
response times required for delivery of a small object, in each
case.

When we eliminated the requests for objects larger than 1 MB
from the KAIST and Waseda traces, the average response times
required for delivery of small objects were 14.3 ms and 21.7 ms,

respectively. The average and maximum response time of the
Waseda trace are both higher than those of the KAIST trace.
This is due to the concentration of the numerous requests in the
Waseda trace in the afternoon; whereas, requests in the KAIST
trace are more evenly distributed across the day and night. As a
result, during peak times, requests in the Waseda trace generate
more significant overheads than those in the KAIST trace.

When requests for objects for which the size is between 1 MB
and 10 MB are included, the average response times increase to
21.3 ms (1.5x) and 32.4 ms (1.5x). As the traces include more
requests for objects larger than 10 MB, the average response
times per trace significantly increase, to 572.8 ms (40.1x) and
1,503 ms (69.2x). This clearly shows that delivery of small ob-
jects is delayed by the extremely small number of requests for
large objects, for which the access count comprises less than
0.1%.

To further investigate how many requests for small objects are
directly affected by concurrently delivered large objects and to
what extent; for every request for small objects, we compared
its two response times in two different experiments; with and
without concurrent requests for large objects. Fig. 3 shows the
results in CDF. As shown in Fig. 3(a), as the KAIST trace in-
cludes requests for objects for which the size is between 1 MB
and 10 MB, about 26% of requests for other small objects are
delayed due to concurrently delivered large objects. For about
8% of the requests, the response time increases by more than a
factor of ten. For about 0.7% and 0.06% of the requests, the re-
sponse time increases by more than a factor of one hundred and
one thousand, respectively. In the worst case, it increases by a
factor of 12,823. When the KAIST trace includes all requests
for objects larger than 10 MB, there is a much steeper increase
in response times. In this case, a greater number of requests for
small objects are even more severely delayed; around 34% of
requests for small objects incur delays. For about 20% of the
requests, the response times increase by more than a factor of
ten. For about 6.8% and 3.2% of requests, the response times
increase by more than a factor of one hundred and one thou-
sand, respectively. In the worst case, it increases by a factor as
high as half a million. Around 0.3% of requests failed.

We also obtained similar results using the Waseda trace, while
the proportion of the number of delayed requests due to concur-
rently delivered large objects is smaller than that of KAIST. As
shown in Fig. 3(b), as the Waseda trace includes requests for ob-
jects for which the size is between 1 MB and 10 MB, about 23%

KIM et al.: PERFORMANCE IMPACT OF LARGE FILE TRANSFER ON WEB PROXY... 57

(a)

(b)

Fig. 3. Latency increase with concurrent requests for large objects: (a)
KAIST trace and (b) Waseda trace.

of requests for other small objects are delayed. For about 10.6%,
3.3%, and 1.3% of the requests for small objects, the response
times increase by more than a factor of ten, one hundred, and
one thousand, respectively.

The worst case figure is even worse than that of the KAIST
case; it increases by a factor of 1.1 million. When the Waseda tr-
ace includes all requests for objects larger than 10 MB, there is
a relatively steeper increase in response time. As for the KAIST
trace experiment, a greater number of requests for small objects
are even more severely delayed; around 26% of requests for
small objects incur delays. For about 12.7% of the requests, the
response time increases by more than a factor of ten. For about
4.7% and 1.9% of the requests, the response time increases by
more than a factor of one hundred and one thousand, respec-
tively. In the worst case, it increases by a factor as high as 2.5
million. The request failure rate is 4.2%, a factor of fourteen
higher than that of the KAIST trace.

Figs. 4 and 5 show the variation of response times for small

(a)

(b)

Fig. 4. Latency increase (in X times) based on the number of concurrent
requests for small and large objects: (a) KAIST trace and (b) Waseda
trace.

objects, according to the number of concurrent requests for
small and large objects. Fig. 4 depicts the average latency in-
crease of small objects, particularly when there are n concurrent
requests for small objects (as in the x-axis) and m concurrent
requests for large objects (as in the legend). Fig. 5 shows the
real delays (in milliseconds) that small objects incurred due to
large objects. As shown in Fig. 4(a), when the number of large
objects transferred is less than 10, and the number of small ob-
jects delivered is less than 100, the average latency increase is
less than a factor of hundred in most cases. As the number of
small objects exceeds 100 and the load on the cache server in-
creases, the average response time increases by a factor of a few
to tens of thousands. Fig. 4(b) of the Waseda trace, whilst it is
not identical, shows a similar pattern. Usually, the greater the
number of large objects the cache server processes, the greater
the delay incurred by small objects.

Note that when the number of concurrent requests for small
objects exceeds a few hundred to a thousand, for instance, dur-
ing peak-times, even a few concurrent requests for large objects

58 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 12, NO. 1, FEBRUARY 2010

(a)

(b)

Fig. 5. Latency increase (in milliseconds) based on the number of con-
current requests for small and large objects: (a) KAIST trace and (b)
Waseda trace.

often causes significant performance degradation at the cache
server, thereby causing huge delays for the delivery of small ob-
jects. Here, we argue that the frequent peak-time performance
degradation bottleneck at cache servers is largely likely due to
concurrent delivery of large objects, regardless of their number.

C. Impact on CPU Usage, Main Memory Usage, and Disk I/O
Operations

Thus far, we have examined the impacts of large file trans-
fers in terms of the delivery performance of concurrent small
file transfers on our experimental squid web proxy cache server.
The purpose of this subsection is to provide more insight into
where the performance bottleneck arises, via performance pro-
filing of various internal components other than bandwidth re-
source, i.e., CPU usage, main memory usage, and number of
disk I/O operations, in the cache proxy. To this end, we use a
popular system monitoring tool, viz., bsdsar [15].

(a)

(b)

Fig. 6. CPU usage with and without requests for large objects: (a) KAIST
trace and (b) Waseda trace.

The CPU usage, main memory usage, and number of disk
I/O operations of the cache box with and without requests for
large objects are illustrated in Figs. 6, 7, and 8, respectively. As
shown in these figures, none of these resources in the cache box
are overwhelmed by requests for large objects. With requests for
large objects, the CPU usage comprises at most 30%, and main
memory usage is no more than 200 MB (only 10% of 2 GB). Ad-
ditional disk overheads, in terms of the number of I/O operations
due to requests for large objects, are also negligible (Fig. 8). The
results we have presented thus far are congruent with the previ-
ous work; this states that the performance bottleneck of Internet
servers consisting primarily of static content is due to the limited
network bandwidth allocated to the server [16].

D. Implications for Web Caching

We found that requests for large objects from high bandwidth
clients often generates sudden spikes, and governs the volume
of peak loads in web traffic. We observed that requests for large

KIM et al.: PERFORMANCE IMPACT OF LARGE FILE TRANSFER ON WEB PROXY... 59

(a)

(b)

Fig. 7. Main memory usage with and without requests for large objects:
(a) KAIST trace and (b) Waseda trace.

objects for which the access count comprises less than 0.1% of
the total, often overwhelm the cache server and make the cache
server a bottleneck in a web network. They delay other concur-
rently requested small objects.

Our cache server incurred significant performance degrada-
tion, due to delivery of large objects. Around 30% of requests for
small objects were delayed. During non peak-times, they were
delayed by a factor of a few to tens.

During peak-times, even a few large objects delayed them by
a factor of hundreds of thousands to a few million. Around 0.3%
and 4.2% of requests for small objects failed, due to concur-
rently requested large objects, for the KAIST and Waseda trace
experiment, respectively.

We argue that the bandwidth bottleneck is due to the funda-
mental limitations of the current centralized web proxy caching
model that scales poorly when there is a limited amount of ded-
icated resource. This is a serious threat to the viability of the cu-
rrent web proxy caching model, particularly in a high bandwidth

(a)

(b)

Fig. 8. Number of disk I/O operations with and without requests for large
objects: (a) KAIST trace and (b) Waseda trace.

access network, since it leads to sporadic disconnections of the
downstream access network from the global web network.

As a result, some users have to wait for more than a few
seconds to obtain a small text document, which was previously
downloaded within just a few milliseconds, due to a few large
objects concurrently requested by other users. Some business-
oriented sites, where the so-called eight second rule is applied,
may lose visitors and money, because users accessing the sites
are restricted at their local cache server.

That is, the squid cache proxy, in world-wide deployment for
the last ten years,5 is very vulnerable to attacks from malicious
clients that repeatedly request very large objects through their
high bandwidth pipes with malicious intent. Whilst we have on-
ly examined the squid proxy cache in this paper, we postulate
that many other squid-based open-source cache servers, as well
as commercial cache servers, are also vulnerable to this prob-

5Squid is known to capture at least 80% of the caching proxy market in Europe
and about 70% in the US [12].

60 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 12, NO. 1, FEBRUARY 2010

lem in a high bandwidth network, unless they have an additional
mechanism for handling large-sized objects.

We postulate that the frequent peak-time performance degra-
dation bottlenecks at cache servers are likely to be due to con-
current delivery of large objects. This is likely to be the reason
why users in a high bandwidth network often complain about
web cache servers installed on their access network. We also po-
stulate that the transmission failure of web objects reported in
[4] is not only due to the problem of wide-area Internet dynam-
ics. Rather, at present, it is more likely to be due to the local
cache bottlenecks.

Objects larger than O(10) MB had a relatively significant im-
pact on the experimental cache. More than tens of concurrent re-
quests for objects for which the size is between 1 MB and 10 MB
affected its performance to a significant extent. This threshold
size varies according to the downstream user population and
number of concurrent user requests. In a larger scale access
network where there are so many downstream users that more
than hundreds or thousands of users often request MP3 objects
concurrently, the threshold size is a few MB for a multi-Gb/s
cache. In such an environment, even clients with 10/100 Mb/s
connectivity will often cause the same problem for their up-
stream web proxy cache. In the same context, we postulate that
even when a web proxy cache has 10 Gb/s connectivity, many
downstream clients concurrently downloading O(10) MB ob-
jects with 100 Mb/s–1 Gb/s connectivity will often cause the
same problem, in a large scale access network.

We postulate that web proxy caching continues to be one of
the most popular information provisioning techniques on the In-
ternet in the era of multimedia networking. However, our neg-
ative results naturally lead to reevaluation of the current web
caching scheme.

IV. PEER-TO-PEER COOPERATIVE WEB CACHING

Thus far, we have studied the impact of large file transfers
on the performance of web proxy caching in a high bandwidth
network. This section proposes a peer-to-peer cooperative web
caching scheme to solve the cache bottleneck problem. We eval-
uate the proposed scheme.

A. Why Peer-to-Peer?

The main idea of our scheme is based on the following;
(1) many large web objects were previously downloaded and
cached in a desktop machine’s local web cache space. Why not
share large objects among them directly, as many peer-to-peer
applications do, rather than via a cache server, which often be-
comes a bandwidth bottleneck when handling large objects?
(2) According to our previous study [17], the default size of the
local web cache space in a desktop machine is generally config-
ured to 3% or more of its total disk size. This comprises approx-
imately 1 GB of the 33 GB average disk space installed on each
machine. In most cases, 1 GB should be sufficient to cache and
share large objects that were previously downloaded, for a few
days to a week, since 98.8% of clients logged in the KAIST and
Waseda traces had previously downloaded less than 100 MB of
large objects over 96 hours, as shown in Table 6.

Table 6. Proportion of clients according to the total volume of

downloaded objects (for 96 hours).

Trace < 10 MB > 10 and < 100 MB > 100 MB and < 1 GB > 1 GB
KAIST 69.3% 29.5% 1.2% 0.03%
Waseda 78.4% 20.5% 1.1% 0%

This summarizes the volume of large objects that had previ-
ously been downloaded and stored in each machine’s disk space.
We obtained the same results for both traces; of the machines
that had downloaded at least one large object during the four
days of the collection period, 99% had downloaded less than
100 MB of large objects. Only a few machines, 1%, had down-
loaded more than 100 MB of large objects.

The disk size doubles every 12 months [18] and the average
disk usage is around 50–66% [17]. Therefore, it seems both fea-
sible and cost effective to exploit each peer’s local web cache
space as a part of a large virtual cooperative web caching sys-
tem to share large objects in their disk storage space, particularly
on a high bandwidth network where every desktop machine has
more than 100 Mb/s connectivity.

(3) We avoided modifying the conventional web caching
model, to maximize the performance, backward compatibility
and deployability of the proposed system. Small objects are
generally delivered to users within a few milliseconds, unless
they are concurrently transferring large objects through the same
cache server. Accordingly, our scheme adopts a hybrid web
caching model, where large objects are cached and delivered
using desktop machines’ resources, while small objects are still
cached and transferred through a cache server, as in the conven-
tional web caching scheme.

As in the conventional web caching system, our model lets
HTTP requests from clients be directed to a local web cache
server. Then, the cache first checks if the requested object has
been cached. If a cache-miss occurs, it fetches the requested ob-
ject from the original web server, and relays it to the requesting
client. If a cache-hit occurs, the size of the requested object is
checked. If it is less than the pre-configured threshold, the ob-
ject is delivered from the cache server to the requesting client,
as usual. Otherwise, if it is larger than the pre-configured thresh-
old, the request is redirected by the cache server to other desktop
machines holding the object in their local cache space.

We adopt the redirection mechanism proposed in [19], for red-
irection operations. This is a generalization of the well-known
HTTP redirection 3xx codes. Our proxy cache server only needs
to maintain a table of addresses of the desktop machines that
have recently requested large objects. Considering that an IP ad-
dress is four bytes and the number of unique large objects that
have been requested over four days is less than ten thousand
in both the KAIST and Waseda traces, only a few megabytes
of memory is sufficient to maintain 10–100 addresses of desk-
top machines per requested large object. This server-based re-
quest redirection enables a client to locate the requested large
object within just two application-level hops—the first to the
cache server and the second to peers. The additional overhead
required to redirect each request is negligible compared to the
transmission delay required for delivery of an entire large ob-
ject, since redirection is performed to a peer node within less

KIM et al.: PERFORMANCE IMPACT OF LARGE FILE TRANSFER ON WEB PROXY... 61

Fig. 9. Proposed model.

than a few milliseconds on the same campus network, and in-
volves transferring just tens to hundreds of bytes of data.

Fig. 9 illustrates the proposed model. It consists of two com-
ponents: A modified web cache server and a set of modified
downstream desktop machines that also serve as peer caches for
large objects. Let us assume that clients A, B, and C have re-
cently requested large object a. Client D now requests the same
object. The cache server responds to the request by sending a list
of addresses, {C, B, A}, to D. Then, client D selects the peer (or
peers, if it is designed to download from multiple sources) from
which it will download the object.

Since (1) we assume that all peers are located close to one
another on a single high bandwidth campus network, and (2) the
number of requests for large objects and number of peers that
have requested large objects over a few days has roughly the
same order of magnitude, the proposed caching system does not
need a complex algorithm for the peer selection process. Any
peer selection algorithms that consider: (i) If the requested ob-
ject is currently available in the peer, (ii) the maximum band-
width the peer allocated to serve other clients (this is configured
by its owner), (iii) the number of requests the peer currently
serves to others, and (iv) the current CPU usage of the peer,
should be sufficient for the proposed system.

When an error occurs during object transmission due to the
selected peer’s sudden departure from the system, the client con-
tacts the next good peer and invokes partial fetching to fetch the
rest of the data and construct a complete one, as in [4]. If the
client does not find any available peers where the requested ob-
ject is stored, and the object is still available in the cache server,
the request is satisfied by the cache server. This simple fall-back
mechanism enables the proposed system to switch back to a con-
ventional web caching system at the cost of a few additional
application-level operations. The following subsection presents
our preliminary results from the trace-driven experiment that
evaluates the feasibility and performance of the proposed web
caching scheme.

B. Simulation Environment

We used the emulated high bandwidth network environment
shown in Fig. 1 for the evaluation. We used simclient to generate
a stream of real-time requests based on an input trace, a mod-

ified version of squid for our modified cache server, dummynet
to set the delay and bandwidth, and webulator to emulate web
servers. The communications between the modified cache server
and peers used in our experiment are based on Fig. 8. After the
first request for a large object is served through the cache server,
the following requests for the same large object are directed to
our own simple simulator, viz., simpeer.

At this stage, the simpeer simulator logs the request arrival
time, object URL, IP address of the requesting client, and size
of the requested object. After all requests in the re-generation
process conducted by simclient are completed, simpeer indepen-
dently simulates peer characteristics based on the input log file
and parameters, such as the volume of the network bandwidth
and local cache space allocated by each peer. In simpeer, a new
peer requesting a previously requested large object is redirected
to the peer that most recently downloaded the same object. For
simplicity, we assume that all peers allocate the same volume of
upstream network bandwidth. The effects of the heterogeneous
network bandwidth environment on the performance of the pro-
posed system are left as our future work. We varied the upstream
network bandwidth of all peers between 500 kb/s and 100 Mb/s
to determine what volume of peer upstream bandwidth was re-
quired to make the proposed system operate effectively, witho-
ut significant performance degradation. The download speed of
each large object from a peer was calculated as the quotient
of the maximum upstream bandwidth of the peer / the number
of requests it is processing. All peers that had downloaded any
large objects were assumed available over the whole simulation
period, 24 hours.

More detailed parameters on dynamic peer characteristics,
such as the peers’ uptime, downtime and CPU usage of each
peer can also affect the transmission rate among peer nodes;
however, these are not considered, since the purpose of this sim-
ulation is generally: (1) To show if our idea of directing requests
for large objects from the cache server to desktop machines
deals with the cache server bottleneck, (2) to determine how
much overhead the proposed scheme generates for each peer in
terms of additional network bandwidth consumption. As we ob-
served in the previous section, other resources such as CPU and
disk storage space are not primary bottlenecks when transfer-
ring large objects. In this paper, we assume that objects larger
than 1 MB are large ones for this experiment. The size of each
redirection message, in which multiple addresses of peers are
contained, was configured to 30 bytes. All the other parameters,
such as the cache server’s bandwidth and round trip times, are
shown in Fig. 1. We used the selected KAIST and Waseda traces
described in Table 2.

C. Simulation Results

Fig. 10(a) plots the cumulative probability distribution of the
cache server bandwidth usage for the KAIST trace, for two
cases. The first is the conventional web caching scheme, and
the other is for the proposed caching scheme. We found that the
proposed scheme reduces the cache server bandwidth usage sig-
nificantly. With the proposed scheme, the volume of peak traffic
at the cache server was reduced by 78.8%, from 698.7 Mb/s
to 148 Mb/s. Average traffic volume decreases from 14.7 Mb/s
to 11 Mb/s. The volume of the additional traffic generated in

62 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 12, NO. 1, FEBRUARY 2010

(a)

(b)

Fig. 10. CDF: Cache server bandwidth usage: (a) KAIST trace and (b)
Waseda trace.

redirecting 5,669 requests for large objects was only 265.7 kB
over the one day experiment. Fig. 10(b) plots the cumulative
distribution of the cache server bandwidth usage for the Waseda
trace. With the proposed scheme, the volume of the peak traffic
at the cache server was reduced by 70.7%, from 672.1 Mb/s to
197.2 Mb/s. Average traffic volume decreases from 4.1 Mb/s to
3.3 Mb/s.

Fig. 11(a) plots the cumulative probability distribution of the
latency required for delivery of small objects from the cache
server, for the KAIST trace. The first is the conventional web
caching scheme, and the other is for the proposed caching sys-
tem. The proposed scheme significantly reduces the latency re-
quired for delivery of small objects, to which 99.88% of all web
requests are directed. With the proposed scheme, the maximum
latency is significantly reduced, from 716.2 sec to 3,709 ms. Av-
erage latency decreases from 572.8 ms to 21.1 ms. Fig. 10(b)
plots the results obtained using the Waseda trace. With the pro-
posed scheme, the maximum latency is reduced from 2,591

(a)

(b)

Fig. 11. CDF: Latency taken to deliver small objects: (a) KAIST trace
and (b) Waseda trace.

sec to 899.8 sec. Average latency significantly decreases from
1,503 ms to 26.5 ms. Compared to the results shown in Table
5, these results indicate that delivery of small objects is neither
delayed nor failed due to requests for large objects, when our
peer-to-peer caching scheme is used for caching and delivery of
large objects.

A critical requirement of a peer-to-peer system running as a
background job on desktop machines is that the extra load it
imposes on the peer is low, and that a high load is never sus-
tained for long [20]. Therefore, we quantify the extra load on
participating peers in the proposed system. Fig. 12 depicts the
cumulative probability distribution of the number and the vol-
ume of large objects that had been served by each peer. For the
experiment with the KAIST trace, the number of peers that had
served other peers at least once was 1,252, 76.1% of all group
members. Of these, 1,230 nodes, 98.2% of the 1,252 peers, had
served less than 10 requests to other peers over a one day period.
The busiest, most popular one, had served 55 requests to other

KIM et al.: PERFORMANCE IMPACT OF LARGE FILE TRANSFER ON WEB PROXY... 63

peers over the entire day, transferring a total of 91.5 MB. On av-
erage, peers had served 1.9 large objects, transferring 10.0 MB.
For the same experiment with the Waseda trace, the number of
peers that had served other peers at least once was 137, 25.1%
of all group members. Of these, 135 nodes, 98.5% of the 137
peers, had served less than 10 requests to other peers. The busi-
est, and popular one, in terms of the number of objects that had
been served, had served at most 18 requests to other peers over
the entire day, transferring a total of 37.4 MB. On average, peers
had served two large objects, transferring 7.4 MB over 24 hours.

The results of the performance evaluation presented in this
section indicate that the proposed system in a high bandwidth
network performs the task of caching and delivery of large ob-
jects in an efficient and cost-effective manner, without generat-
ing significant overhead for participating peers.

V. COMPARISON TO RELATED WORK

Over the previous decade, the research on improving web
performance and workload characterization has attracted signif-
icant attention [2], [3], [6], [9], [13]. These studies have shown
that web workloads exhibit significant short-term burstiness
(self-similarity) and are heavy-tailed. The performance benefits
of web caching in reducing the average time, network bandwidth
usage and server load has been shown in [9], [21], [22]. Most
of these studies focused on the average load, or issues such as
the impact of low bandwidth connections and non-cacheable ob-
jects; while our study investigates the impact of the delivery of
large objects on web cache servers in a high bandwidth network
environment. A noteworthy exception, Raunak et al. [6], found
that unlike the substantial impact they have on the average load,
web caches have a limited impact on the tail of the load distribu-
tion, primarily due to the characteristics of large objects; even a
single cache-miss for an extremely large object can often cause
a large volume of traffic to be fetched from its distant original
web server. They focused on the reduced effects of web caching
on the tail of the load distribution, which is complementary to
this paper.

Surprisingly, there have only been a few studies on large ob-
ject transfers in web proxy caching. Jung et al. pioneered this
topic. They found that the transmission performance and storage
utilization at web cache servers was poor, especially in deliver-
ing large objects, since there is a fundamental trade-off between
a cache server’s internal resource utilization and improving the
performance [23]. They also found that large multimedia data
transfers often fail over wide-area networks. They proposed an
on-demand cumulative pre-fetching scheme, to avoid unneces-
sarily re-fetching of the entire body of failed objects [4]. While
their work focused on measuring and improving the quality of
large object transfers through a web proxy cache, this paper fo-
cuses on the cache bandwidth bottleneck problem caused by
large object transfers; we measured the extent to which these
large object transfers affect the performance of cache servers in
handling requests for the other concurrent small objects for the
first time. We then solved the bandwidth bottleneck problem.
Since the replicache system proposed in [23] is solely designed
to improve the quality (i.e., speed) of large object transfers with-
out consideration of the quality of concurrent small object trans-

(a)

(b)

Fig. 12. CDF: The number and total volume of large objects served by
each peer: (a) Number of large objects served by each peer and (b)
total volume of large objects served by each peer.

fers, the proposed system makes the cache bandwidth bottleneck
problem worse.

The most obvious solution to overcome the bandwidth bot-
tleneck is to upgrade the memory and bandwidth resources,
when it is both feasible and cost effective to do so, with com-
mercially available cards and modules. When upgrading cannot
solve the scalability problem, tightly-coupled clusters of ma-
chines have been deployed to provide a scalable web caching
service [24]. However, while a cluster-based centralized web
caching scheme may be scalable to a certain degree, in terms of
the user population and number of concurrent user requests in a
low bandwidth network environment, it is neither cost-effective
nor scalable in a high bandwidth network environment, where
(1) The bandwidth of numerous downstream clients approaches
that of the local web caching facility and (2) there are pop-
ular objects for which the size is so large that even a small
number of concurrent requests for them can saturate a cache

64 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 12, NO. 1, FEBRUARY 2010

server’s resources easily. In such an environment, it will even-
tually become a bottleneck in handling sudden peak traffic gen-
erated by concurrent requests for very large objects. While the
problem can be alleviated to a certain degree by resource over-
provisioning and over-investment, it is too expensive to install
and maintain [20], considering that the requests for large objects
comprise less than 0.1% of total access counts.

From a technical perspective, a distributed web caching sys-
tem [24]–[28], where multiple cache servers are deployed at
multiple locations, may be a candidate solution. Much work has
been done on distributed cooperative web caching systems over
the last decade. However, this has generally focused on reduc-
ing upstream regional, domestic or wide-area network traffic, by
making cooperative cache servers, across multiple access net-
works. Installing and maintaining multiple servers at multiple
locations within a single access network (e.g., campus network)
to handle requests for large objects comprising less than 0.1%
of total access counts is surely too expensive.

A dedicated server-based approach, whether it is centralized
or distributed, has the fundamental limitation that the fixed vol-
ume of memory and bandwidth resources allocated to the sys-
tem limits the maximum throughput of the system. Our analyses
in the previous section showed that the cache server’s perfor-
mance is significantly degraded, even when it handles a lim-
ited number—only tens—of concurrent requests for large ob-
jects. The bandwidth and memory cost required for delivery of
each large object is too high. Therefore, conventional server-
based web caching systems cannot provide a solution that is both
scalable and cost-effective, particularly when many downstream
clients concurrently request large objects. We need a more intel-
ligent web caching scheme to solve the cache bottleneck prob-
lem. The volume of burst traffic caused by concurrent requests
for large objects is reduced to a level where the cache server
does not become overwhelmed by them. Thereby, requests for
small objects are not delayed.

Harchol-Balter et al. [16], [29], [30] is a recent noteworthy
work, although it addresses the problem of web server perfor-
mance, rather than web proxy cache servers. Traditionally, re-
quests at a web server are handled via FAIR scheduling: The
web server allocates its resources fairly among those requests
ready to receive services (as with the squid proxy cache). In-
stead, they proposed unfair scheduling, in which they give
higher priorities to requests for small files or requests with a
small remaining file size, in accordance with the shortest re-
maining processing time (SRPT) scheduling policy. Results in-
dicate that SRPT-based scheduling of connections yields signif-
icant reduction in delays at the web server, and hardly penalizes
requests for large files. We are investigating the extent to which
the size-based scheduling technique can alleviate the cache bot-
tleneck problem caused by transfer of very large objects. The
results will appear in a future paper.

Iyer et al. proposed a fully decentralized peer-to-peer web
caching scheme called squirrel [20]. It needs no dedicated in-
frastructure other than the resources allocated by desktop ma-
chines. On top of a decentralized request routing and object lo-
cation scheme called pastry [31], squirrel gathers and pools re-
sources from desktop machines, to achieve comparable perfor-
mance to a dedicated web cache server. An obvious drawback of

squirrel’s fully decentralized approach is that it is affected by ad-
ditional overhead in the request routing and object location pro-
cess, due to its fully decentralized indexing, lookup, and routing
schemes. A distributed lookup scheme, such as chord [32] and
pastry [31], has a lookup cost in the order of O(log(N)) opera-
tions, where N is the number of nodes in the system. The lookup
delays are regarded as negligible when large objects are deliv-
ered; however, for small objects that are generally delivered to
users within a few milliseconds, the overheads can often be a
significant proportion of the transaction latency. They thereby
degrade the overall system performance significantly. To avoid
such unnecessary delays in handling small objects that comprise
99.9% of total access counts, while exploiting the benefits of the
peer-to-peer content sharing model in handling large objects, we
adopted a hybrid web caching scheme, where large objects are
cached and delivered using desktop machines’ resources; while
small objects are still cached and transferred through a cache
server, as in conventional web caching schemes. More recently,
[33]–[37] proposed and evaluated the performance of various
peer-to-peer web caching schemes. Nonetheless, none of the
work focused on the performance impact of large object trans-
fers on web proxy caching.

Our proposed caching scheme is a combination of the concept
of cooperative web caching [24]–[28] and peer-to-peer multime-
dia sharing applications. Since the proposed system maintains
an object index at a local cache server and redirects incoming re-
quests to other candidate peers, it is more like the distributed In-
ternet cache model [27], rather than the hierarchical web cache
model [28]. For the same reason, it is more like napster [38]
where a centralized index is maintained, rather than fully de-
centralized systems such as gnutella [39] and squirrel [20]. The
idea of block-level file transfer and replication among partici-
pants has been used in various systems, such as swarmcast [40],
edonkey [41], KaZaA [42], and logistical networking [43]. We
leave the adoption of such an idea (i.e., slicing a large file into
many smaller objects and managing them in a distributed man-
ner among peers) for our future work. Padmanabhan et al. [19]
and Stading et al. [44] proposed a peer-to-peer model to ad-
dress the flash crowd problem of web servers, rather than cache
servers. Squirrel is proposed as a fully decentralized scalable
peer-to-peer routing-based scheme. It needs no dedicated infras-
tructure, other than the desktop machines themselves [20]. To
the best of our knowledge, this is the first study that explicitly
defines, addresses and solves the cache server bandwidth bot-
tleneck problem, particularly the one caused by concurrent re-
quests for large objects from downstream clients in a high band-
width network.

VI. CONCLUSION

In this paper, we studied the impact of large file transfers on
the performance of web proxy caching in a high bandwidth net-
work environment. We conducted a series of thorough performa-
nce analyses and profiling of various resource components in
our experimental squid proxy cache server. The analyses shows
that the requests for large objects, for which the access count
comprises less than 0.1% of the total, often overwhelm the cache
server’s bandwidth resource. This makes it a bottleneck in web

KIM et al.: PERFORMANCE IMPACT OF LARGE FILE TRANSFER ON WEB PROXY... 65

content delivery. We argue that the cache bandwidth bottleneck
problem caused by large objects can lead to sporadic disconnec-
tions and isolation of users’ access network from the global web
network.

We proposed a peer-to-peer cooperative web caching scheme
to address the bandwidth bottleneck problem and then showed
that it performs the task of caching and delivery of large objects
in an efficient and cost-effective manner, without generating sig-
nificant overhead for participating peers. We have also examin-
ed previous related work and compared them to the proposed
scheme.

ACKNOWLEDGMENT

We would like to thank all those who allowed us to access to
their logs, without whom this research would have been impos-
sible; Professor Shigeki Goto and Atsushi Ito at Waseda Univer-
sity, and Sun-kyu Kim and Taejin Yoon at KAIST. We are also
grateful to Duane Wessels and Kc Claffy for their invaluable
feedback. Our special thanks to anonymous reviewers, whose
feedback was vital to improve the presentation of this work.

REFERENCES
[1] A. Myers, J. Chuang, U. Hengartner, Y. Xie, W. Zhang, and H. Zhang, “A

secure, publisher-centric web caching infrastructure,” in Proc. INFOCOM,
USA, Apr. 2001.

[2] M. Arlitt, R. Friedrich, and T. Jin, “Workload characterization of a web
proxy in a cable modem environment,” ACM SIGMETRICS Performance
Evaluation Review, vol. 27, no. 2, pp. 25–36, Sept. 1999.

[3] M. Crovella and A. Bestavros, “Self-similarity in world wide web traffic:
Evidence and possible causes,” IEEE/ACM Trans. Netw., vol. 5, no. 6,
pp. 835–846, Dec. 1997.

[4] J. Jung, D. Lee, and K. Chon, “Proactive web caching with cumula-
tive prefetching for large multimedia data,” Computer Networks, vol. 33,
pp. 645–655, May 2000.

[5] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany, and R. Wolsky, “Inter-
net backplane protocol: Storage in the network,” in Proc. Netstore Symp.,
Oct. 1999.

[6] M. Raunak, P. Shenoy, P. Goyal, and K. Ramamritham, “Implications of
proxy caching for provisioning networks and servers,” IEEE J. Sel. Areas.
Commun., vol. 20, no. 7, pp. 1276–1289, Sept. 2002.

[7] Squid Web Proxy Cache. [Online]. Available: http://www.squid-cache.org
[8] A. Ogawa, K. Kobayashi, K. Sugiura, O. Nakamura, and J. Murai, “De-

sign and implementation of DV-based video over RTP,” WIDE Workshop,
Stanford University, Jan. 2002.

[9] A. Feldmann, R. Caceres, F. Douglis, G. Glass, and M. Rabinovich, “Per-
formance of web proxy caching in heterogeneous environments,” in Proc.
IEEE INFOCOM, Mar. 1999.

[10] Proxycizer. [Online]. Available: http://www.cs.duke.edu/ari/cisi/Proxycizer
[11] L. Rizzo, “Dummynet: A simple approach to the evaluation of network

protocols,” ACM Computer Communication Review, vol. 27, no. 1, pp. 31–
41, Jan. 1997.

[12] J. Cooper. (2001, July). Squid cache market penetration. [Online].
Available: http://www.squid-cache.org/mail-archive/squid-users/200107/
0639.html

[13] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
zipf-like distributions: Evidence and implications,” in Proc. INFOCOM,
Mar. 1999.

[14] J. P. Savage. (2005, Aug.). “A letter to the U.S. congress.” [Online]. Avail-
able: http://www.ftthcouncil .org/documents/247684.pdf

[15] Bsdsar. System Activity Reporter. [Online]. Available: http://www.goo-
glebit.com/bsdsar

[16] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal, “Size-based
scheduling to improve web performance,” ACM Trans. Comput. Syst.,
vol. 21, no. 2, pp. 207–233, May 2003.

[17] H. Kim, D. Lee, J. Lee, J. Suh, and K. Chon, “A measurement study of
storage resource and multimedia contents on a high-performance research
and education network,” in Proc. IEEE High Speed Network and Multime-
dia Communications, July 2003.

[18] I. Foster, “P2P and Grid Computing,” in Internet2 Peer-to-Peer Workshop:
Collaborative Computing in Higher Education—Peer-to-Peer and Beyond,
Jan. 2002.

[19] V. N. Padmanabhan and K. Sripanidkiulchai, “The case for cooperative
networking,” in Proc. Int. Workshop on Peer-to-Peer Systems, Feb. 2002.

[20] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: A decentralized peer-to-
peer web cache,” in Proc. ACM Symp. Principles of Distributed Comput-
ing, July 2002.

[21] A. Rousskov and V. Soloviev, “On performance of caching proxies,” in
Proc. ACM SIGMETRICS, June 1998.

[22] M. Crovella and P. Barford, “The network effects of prefetching,” in Proc.
IEEE INFOCOM, 1998.

[23] J. Jung and K. Chon, “RepliCache: A new approach to scalable network
storage system for large objects,” in Proc. Int. Web Caching Workshop,
Apr. 1999.

[24] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier,
“Cluster-based scalable network services,” in Proc. ACM Symp. Operat-
ing System Principles, Oct. 1997.

[25] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and V. Jacob-
son, “Adaptive web caching: Towards a new global caching architecture,”
Computer Networks and ISDN Systems, vol. 30, pp. 22–23, Nov. 1998.

[26] R. Tewari, M. Dahlin, H. M. Vin, and J. Kay, “Beyond hierarchies: Design
considerations for distributed caching on the Internet,” in Proc. Int. Conf.
Distrib. Comput. Syst., June 1999.

[27] D. Povey and J. Harrison, “Distributed internet caches,” in Proc. Aus-
tralian Computer Science Conf., Feb. 1997.

[28] A. Chankhunthod, P. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Wor-
rel, “A hierarchical internet object cache,” in Proc. USENIX Technical
Conf., Jan. 1996.

[29] B. Schroeder and M. Harchol-Balter, “Web servers under overload: How
scheduling can help,” ACM Trans. Internet Technologies, vol. 6, no. 1,
pp. 20–52, Feb. 2006.

[30] M. Crovella, B. Frangioso, and M. Harchol-Balter, “Connection schedul-
ing in web servers,” in Proc. USENIX Symp. Internet Technologies and
Syst., Oct. 1999.

[31] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object loca-
tion, and routing for large-scale peer-to-peer systems,” in Proc. Int. Conf.
Distrib. Syst. Platform, Nov. 2001.

[32] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for Internet applications,”
in Proc. ACM SIGCOMM, Aug. 2001.

[33] Z. Xu, Y. Hu, and L. Bhuyan, “Exploiting client caches: A scalable and
efficient approach to build large web cache,” in Proc. Int. Parallel and
Distrib. Process. Symp., Apr. 2004.

[34] P. Linga, I. Gupta, and K. Birman, “A churn-resistant peer-to-peer
web caching system,” in Proc. ACM Workshop on Survivable and Self-
regenerative Systems, Oct. 2003.

[35] P. Linga, I. Gupta, and K. Birman, “Kache: Peer-to-peer web caching us-
ing kelips,” in submission, June 2004.

[36] W. Shi and Y. Mao, “Performance evaluation of peer-to-peer web caching
systems,” J. Syst. Softw., vol. 79, no. 5, pp. 714–726, May 2006.

[37] Y. Mao, Z. Zhu, and W. Shi, “Peer-to-peer web caching: Hype or reality?”
in Proc. Int. Conf. Parallel and Distrib. Syst., July 2004.

[38] Napster. [Online]. Available: http://www.napster.com
[39] Gnutella Open Source Community. [Online]. Available: http://gnutella.

wego.com
[40] Project Swarmcast. [Online]. Available: http://sourceforge.net/projects/

swarmcast
[41] Edonkey. [Online]. Available: http://www.edonkey2000.com
[42] KaZaA. [Online]. Available: http://www.kazaa.com
[43] M. Beck, T. Moore, and J. Plank, “An end-to-end approach to globally

scalable network storage,” in Proc. ACM SIGCOMM, Aug. 2002.
[44] T. Stading, P. Maniatis, and M. Baker, “Peer-to-peer caching schemes to

address flash crowds,” in Proc. Int. Workshop on Peer-to-Peer Syst., Feb.
2002.

66 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 12, NO. 1, FEBRUARY 2010

Hyun-Chul Kim is a BK Assistant Professor at Seoul
National University. Prior to joining Seoul National
University, he had worked at the Cooperative Asso-
ciation for Internet Data Analysis (CAIDA, based at
San Diego Supercomputer Center, UC San Diego) as
a postdoctoral visiting scholar from 2006 to 2007. He
received his B.S., M.S., and Ph.D. degrees in Com-
puter Science from Korea Advanced Institute of Sci-
ence and Technology (KAIST) in 1995, 1997, and
2005, respectively. His research interests include In-
ternet traffic classification, contents-oriented network-

ing, analysis and modeling of end-host and human behavior pattern observed
in the Internet applications such as peer-to-peer file sharing applications,
MMORPGs, etc.

Dongman Lee received his B.S. degree in Computer
Engineering from Seoul National University, South
Korea in 1982, and M.S. and Ph.D. degrees in Com-
puter Science from Korea Advanced Institute of Sci-
ence and Technology (KAIST), Daejeon, South Korea
in 1984 and 1987, respectively. From 1988 to 1997, he
worked as Technical Contributor at Hewlett-Packard.
From 1998 to March, 2004, he joined, as an Asso-
ciate Professor, School of Engineering, Information
and Communications University (ICU). From April
2004, he became a Professor at ICU. From March

2009, he is Professor at Computer Science Department, KAIST. He is Director
of Urban Computing Research Center. He received a Prime Minister Award as
the recognition on the advancement of the Korean Internet in 2000 and Internet
Technical Achievement Award at KRNet07 in 2007. He has served as a TPC
member of numerous international conferences including IEEE COMPSAC,
Multimedia, PDCS, PERCOM, PRDC, VSMM, ICAT, etc and a reviewer of
international journals and magazines including ACM TOMCCAP, IEEE TPDS,
IEEE Proceedings, IEEE JIE, IEEE TWC, Computer Networks, TOCSJ, JCN,
IEEE wireless communication magazine, and IEEE Intelligence magazine. He
has been an editor of JCN since 2004. His research interests include distributed
systems, computer networks, mobile computing and pervasive computing. He is
a member of KISS and IEEE, and a senior member of ACM.

Kilnam Chon is a Professor in the Graduate School
of Media and Governance at Keio University, also
serving as a Professor Emeritus in the Department of
Computer Science at Korea Advanced Institute of Sci-
ence and Technology (KAIST), Daejeon, South Ko-
rea. He received his M.S. in computer science and
a Ph.D. in systems engineering from UCLA in 1967
and 1974, respectively. He has special interests in sys-
tem architecture, including computer networking, dis-
tributed processing and information systems. He has
worked as a principal investigator of a national project

on workstation development, intelligent processing computer development and
the information high-way.

Beakcheol Jang is a Ph.D. student in the Depart-
ment of Computer Science at North Carolina State
University, Raleigh, USA. His research interests in-
clude wireless and mobile systems, Internet applica-
tions, such as web and DNS, and traffic analysis with
an emphasis on application performance. He received
his B.S. in Computer Science from Yonsei University,
Seoul, South Korea in 2001, and his M.S. in Computer
Science from Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, South Korea in 2002.

Taekyoung Kwon is an Associate Professor in the
Multimedia and Mobile Communications Laboratory,
School of Computer Science and Engineering, Seoul
National University. He received his Ph.D., M.S., and
B.S. degrees in computer engineering from Seoul Na-
tional University in 2000, 1995, and 1993, respec-
tively. He was a visiting student at IBM T. J. Watson
Research Center in 1998 and a visiting scholar at the
University of North Texas in 1999. His recent research
areas include radio resource management, wireless
technology convergence, mobility management, and

wireless sensor networks.

Yanghee Choi received his B.S. in Electronics En-
gineering from Seoul National University, M.S. in
Electrical Engineering from Korea Advanced Insti-
tute of Science and Technology, and Ph.D. of Engi-
neering in Computer Science from Ecole Nationale
Superieure des Telecommunications (ENST) in Paris,
in 1975, 1977, and 1984 respectively. Before join-
ing the School of Computer Engineering, Seoul Na-
tional University in 1991, he was with the Electronics
and Telecommunications Research Institute (ETRI) in
1977–1991, where he served as the Director of the

Data Communication Section, and the Protocol Engineering Center. He was a
research student at Center National d’Etude des Telecommunications (CNET),
Issy-les-Moulineaux, in 1981–1984. He was also a Visiting Scientist to IBM
T. J. Watson Research Center in 1988–1989. He is now leading the Multime-
dia and Mobile Communications Laboratory in Seoul National University. He is
president of the Korean Institute of Information Scientists and Engineers. He is
also chair of the Future Internet Forum. He is regular member of the National
Academy of Engineering of Korea, and Korea and Korean Academy of Science
and Technology. His research interest lies in the field of Future Internet.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /ahn2006-B
 /ahn2006-L
 /ahn2006-M
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Algerian
 /AmiR-HM
 /AntiqueOlive
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Apple-Chancery
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Candid
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGOmega
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGTimes
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /Chicago
 /Chiller-Regular
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Condensed-Bold
 /Clarendon-Light
 /Cmex10
 /Cmmi10
 /Cmr10
 /Cmsy10
 /ColonnaMT
 /CombiNumerals
 /CombiNumerals-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CooperBlack-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /Coronet
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldExtendedTwo
 /Eurostile-ExtendedTwo
 /ExpoM-HM
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSY--SURROGATE-0
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Gautami
 /Geneva
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-ExtraBold
 /Goudy-Italic
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /H2gprM
 /H2gsrB
 /H2gtrE
 /H2gtrM
 /H2hdrM
 /H2mjrE
 /H2mjsM
 /H2mkpB
 /H2porL
 /H2porM
 /H2sa1M
 /HaansoftBatang
 /HaansoftDotum
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HeadlineR-HM
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /HYbdaL
 /HYbdaM
 /HYbsrB
 /HYcysM
 /HYdnkB
 /HYdnkM
 /HYgprM
 /HYgsrB
 /HYgtrE
 /HYhaeseo
 /HyhwpEQ
 /HYkanB
 /HYkanM
 /HYmjrE
 /HYmprL
 /HYnamB
 /HYnamL
 /HYnamM
 /HYporM
 /HYsanB
 /HYsnrL
 /HYsupB
 /HYsupM
 /HYtbrB
 /HYwulB
 /HYwulM
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Italic
 /LetterGothic-Slanted
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MagicR-HM
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal-Regular
 /Marigold
 /Math1
 /Math1-Bold
 /Math1Mono
 /Math1Mono-Bold
 /Math2
 /Math2-Bold
 /Math2Mono
 /Math2Mono-Bold
 /Math3
 /Math3Bold
 /Math3Mono
 /Math3Mono-Bold
 /Math4
 /Math4-Bold
 /Math4Mono
 /Math4Mono-Bold
 /Math5
 /Math5Bold
 /Math5Mono
 /Math5MonoBold
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /Mistral
 /Modern-Regular
 /MoeumTR-HM
 /Monaco
 /MonaLisa-Recut
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MVBoli
 /NanumGothicCoding
 /NanumGothicCoding-Bold
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewGulim
 /NewYork
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-Italic
 /Oxford
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /PyunjiR-HM
 /Raavi
 /RageItalic
 /Ravie
 /ReboBold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /Stencil
 /Sylfaen
 /Symath
 /Symbol
 /SymbolMT
 /Taffy
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldItalic
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-Condensed-Bold
 /Univers-Condensed-BoldItalic
 /Univers-CondensedBoldOblique
 /Univers-Condensed-Medium
 /Univers-Condensed-MediumItalic
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-Light
 /Univers-LightOblique
 /Univers-Medium
 /Univers-MediumItalic
 /Univers-Oblique
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /YetR-HM
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

