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Abstract—Nowadays, bots are becoming a critical issue for
the online gaming world. Bots give unfair advantages, and are
then considered as cheating and undesirable on game servers.
Currently, CAPTCHA and human controls are the most com-
monly chosen strategies to catch bots. However, these methods
are intrusive and complicated have proven to be inefficient due to
the large servers’ populations. Researchers have proposed various
kinds of automated detection scheme. Yet, these proposals exhibit
unpractical features, such as complexity or scalability issues,
making the deployment on real systems problematic. We propose
to study bots’ and humans’ client-server communication patterns,
focusing on a one of most famous MMORPG called World of
Warcraft. Intuiting that, for sake of efficiency and human-looking
behavior, bots cannot constrain both packet timing and sizes, we
propose a detection scheme that combines both parameters. We
propose an online algorithm that processes our scheme on the
fly as packets arrive. We evaluate the proposed scheme with real
packet trace and observe that it can detect bots with small false
alarm probability.

I. INTRODUCTION

Nowadays, bots are becoming a critical issue for online
gaming world. Used to perform automatically boring tasks
and gain unfair benefits, they are cheating and undesirable
on servers. Moreover, their number remains unknown and
probably keeps growing as the MMOGs (massively multi-
player online games) become more popular, resulting in huge
game imbalances, great bothersome for honest players. They
discourage players from keeping paying subscription fees
and drive out bored people, which naturally threatens game
companies’ profits. To fight this scourge, companies’ engineers
must react quickly to bots’ evolution so as to limit their spread
while avoiding wrongly accusing human players of cheating.
They mostly use repeated Turing tests - including CAPTCHAs
and human controls -, which exhibit very accurate decision and
reasonable deployment requirements. However, their position
is mostly reactive and the best they can do is flow containment.
On the other hand, academic researchers are interested in
deeply understanding bots’ and humans’ very specific behav-
ioral features. This scientific approach yields enduring and
automated detection methods. Yet, each work focuses on a
couple of specific rationales rather than considering a global
and real-time defense strategy. Besides, proposed schemes
exhibit unpractical scalability and complexity characteristics,
making their deployment on real systems problematic.

We provide first a deep survey of the bots detection field to
clear a ground for our work. Then, studying traffic patterns,
our main idea is that bots’ information exchange patterns are
somehow constrained resulting in a duality of information tim-
ing and amount, and a pitfall for bots. From this, we propose
a real-time detection method for ground layer character pre-
selection and test it with World of Warcraft (a.k.a. WoW) traces.
So, our problem consists in detecting bots using short traces
samples and performing simple calculations only, for sake of
speed. Finally, we propose a big plan to integrate the proposed
scheme in a global defense system that could be a future work.

The remainder of this work is organized as follows. Section
2 reviews related works and draws a general picture of the
current bots detection’s state of the start. Section 3 discusses
trace collection. Section 4 explains our strong ideas and
describes features derived from these ideas and our observation
of traces. Section 5 describes the tests using the proposed
features and corresponding algorithms, to come up with an
online detection scheme. Section 6 presents and discusses our
results. Section 7 explores some important issues and possible
future directions. And section 8 contains our conclusion.

II. RELATED WORK

Numerous strategies have been proposed for anti-bots de-
fense. Installing software on client machines to prevent bots
usage is common but helpless against well designed bots.
Turing tests ([15]) include CAPTCHAs and human controls.
CAPTCHAs ([2], [3], [4], [5], [6], [7]) yield almost perfect
decision. But Turing tests might be intrusive, exhibit high
complexity and cannot deal with large populations. Traffic
analysis approach ([1]) offers low time complexity and good
results, but is not yet on online fashion. Despite its power and
robustness, I/O devices event sequence analysis ([8]) exhibits
many unpractical characteristics. Finally, there are a plethora
of schemes based on payload check: trajectory ([11], [10], [9]),
ON-OFF activity ([12]), action type’s sequences ([13]) and
aiming accuracy analysis. It exhibits very good performance
but also high complexity, limited portability and sometimes
raises privacy concerns.

Table I summarizes and compares bot detection schemes.
The chosen criteria are standard performance metrics (accu-
racy, false alarm rate and detection time) and features con-
cerning each scheme’s practical applicability (e.g. robustness,



TABLE I: Survey of the game bots detection research area

Scheme/Technique Turing test Anti-cheating
software Traffic based I/O devices

event
Payload based detection schemes

Trajectory Activity
patt.

Farming
(RGP)

Aim bots
(FPS)

References [2], [3], [4],
[5], [6], [7]

- [1] [8] [11], [10],
[9]

[12] [13] -

Accuracy above 99% - 90% to 95% 95% to 99% 95% to 99% 90% to 95% 90% to 95% -
False alarm rate <1% - <1% - RPG: 0% - - -
Robustness against
human activity mimic

not behav-
ior based

not behav-
ior based

medium to
strong

strong very strong medium strong quite strong

Scheme deployment server client client/server client server server server server
Required traces/logs none none traffic traces window

events
sequence

movement
traces

movement
traces

ID, action
and time
logs

movement,
aiming
direction
and distance

General applicability universal game /
game type

universal
(limited by
feature set)

large
considering
games but
prefers
certain bot
types

functionality universal
(limited by
feature set)

game type game type

Detection time nul nul 9 to 45min - FPS:
3min20
to 12 min;
RPG: 12 to
60 min

20 min 30 to 45min -

Specific limitations possible
harm to
game
experience,
complexity

countered
by
standalone
bots or
smart pro-
gramming

- scheme
stuck at
client side

difficulty to understand deeply features properties,
prediction power and interaction; high complexity;
limited portability (fit to game); privacy concern

generality or possibility to deploy at server side). Besides,
we claim that robustness against evasion is achieved, when
detection evasion harms bot’s performance so much that it is
worthless. In addition, we observe that false alarm rate is rarely
taken into account, though it is very important in practice.
Consequently, we will keep an eye on it in our study.

Eventually, it seems hard to achieve high accuracy, rea-
sonable detection time and realistic time complexity at the
same time. Moreover, since many schemes have been already
offered, a combination of them could achieve better overall
performance. We believe that human check always yields
the best final decision while automated Turing tests offer
a precious assistance to select suspects for further analysis.
However, because Turing tests also need help to overcome
game servers’ crowd, we propose an online traffic pattern
based detection method as ground layer classifier, for sake
of relatively low complexity and hence good scalability.

III. DATA COLLECTION

In order to design our online detection scheme, we collected
WoW traces at client side for both human players and bots.
We chose two bot programs representing fully autonomous
and semi-autonomous bots, respectively Mimic (traces M1 and
M2) and Gatherbuddy (traces G1 and G2). Their popularity
and the possibility to get information from the related commu-
nities’ forums were other choice criteria. On the other hand,
we gathered four human players, including beginners (traces
SS1 and S1) and experts (traces SC1 and X1). All players
(bots and humans) were performing hunting with the same

character for sake of fair comparison. Bots were facing each
favorable (traces x2) and unfavorable conditions (traces x1)
related to relief and monsters’ dangerousness, so that we got
trace diversity and a possibility to check the robustness of
our proposed scheme. Using the Wireshark tool, we collected
then eight traces of about two hours each. Finally, we extracted
from them plain text files containing for each packet its arrival
time, its TSDU length.

IV. OBSERVATIONS AND IDEAS

In this section we gather our thoughts regarding the detec-
tion method and features related rationales. We also present
an insight of our traces and some observations that will serve
as a basis for the detection criteria definition.

A. Underlying ideas

While many good bot detection schemes have been pro-
posed, almost nothing is dealing with anti-bots countermea-
sures. However, he who manages to detect a cheater must also
enforce some really dissuasive punishment policy. Nowadays,
temporary and definitive ban are the available solutions but are
somehow irreversible, making multiple checks and parsimony
necessary to avoid catastrophic wrong sentences. Thus, coun-
termeasures are still rarely used, encouraging bot users to have
a try with limited risks. We rather believe that reaction should
be immediate, increasing in intensity while suspicion is getting
stronger. One basic component of such a defense mechanism is
a ground layer detection method that investigates exhaustively
and on-the-fly every player’s traces to yield a pre-selection of



(a) Human player: trace X1 (b) Bot player: trace G1

Fig. 1: Client packets interarrival times

”good candidates”. Updating metrics at each packet arrival,
the online detection tool finally makes a decision when it has
collected enough data.

On the other hand, online detection raises time and space
complexity’s issue. Indeed, it must operate between two pack-
ets’ arrivals while devoting limited storage capacity to each
player for sake of scalability. For this reason and its generality,
we chose client traffic analysis based detection. Though
this class of methods has exhibited in [1] some breach for
anti-detection, if a bots developer has to sacrifice efficiency
to achieve stealth, we will claim victory. Besides, we noticed
that bots tend to send less information than humans for similar
tasks, theoretically resulting in lower data rates. Actually,
we also observed for Mimic’s case that generating random
information is dangerous for bots: it makes them behave
stupidly and harms their efficiency. Then, assuming data rate’s
constraint and having data rate = data length

interarrival time , we
postulate an interarrival times-data lengths duality : evading
one makes bot vulnerable to the other.

B. Interarrival times

For each packet, we call interarrival time the time duration
elapsed since last packet arrival. Figure 1 shows interarrival
times of chronologically ordered packets within a trace. As
displayed, while human trace contains random values, on small
sample of consecutive packets, bot exhibits either regular and
fast packet arrivals pattern or high and sharp peaks resulting
of periods of inactivity (probably due to path finding or
character’s death). Then, we will consider as bot trace a sample
containing only low interarrival time values (according to a
threshold) or a sharp peak. Details are given in Section 5.

C. Data lengths

We call data length of a packet the size of the corresponding
segment’s payload (i.e. TSDU’s length). Figure 2 shows data
lengths of chronologically ordered packets within a trace.
As exhibited on the graph, unlike human, bot sends almost
no big packets (upper threshold), again affirm our previous
rationale. This could be the only test criterion. However we
achieve better performance by checking more accurately the
data lengths distribution with an additional threshold. Thus,
this test checks the ratios of the sample’s data length values
over each of the thresholds. Details are given in Section 5.

D. Data length autocorrelation

In [14], authors suggest that, in a given data stream, packet
size is auto-correlated, which could be adapted to our problem.
Moreover, we conjecture that human behavior is generally
more random and unpredictable than bot’s. As a result, we
consider data length autocorrelation for another decision test,
expecting bot traces to exhibit significant autocorrelation while
human traces null one. Figure 3 shows autocorrelation profiles
for various traces. Surprisingly, human traces exhibit data
length autocorrelation values significantly far from 0. Another
unexpected fact is the oscillating shape of Mimic’s autocorre-
lation function. However our study will concentrate on using
autocorrelation only as a discriminative feature between bots
and humans. Narrowing the scope on the first autocorrelation
range, we come up with the following observation: bots’
data length autocorrelation is negative, while humans’ one is
positive. This gives us a threshold based test. Details are again
given in Section 5.

V. ONLINE DETECTION SCHEME

This section contains a detailed description of our online
detection scheme.



(a) Human player: trace SS1 (b) Bot player: trace G2

Fig. 2: Client data lengths

Fig. 3: Autocorrelation function

A. DATA LENGTH AUTOCORRELATION test

Fig. 4: Principle of autocorrelation online calculation

Due to space limitation, we describe exhaustively the data
length autocorrelation test, the most elaborate, and will give
only brief explanations for other tests and the global detection

scheme. We adapt the standard definition of autocorrelation for
the sake of on-the-fly calculation on short jumping windows.
Figure 4 shows the arrangement of each window. Thus, we
calculate it using the sampling series and its shifted coun-
terpart (shift is 1), whose variables are denoted by X and
Y, respectively. Then we introduce m1 = mean(X),m2 =
mean(Y ), m11 = mean(X2),m22 = mean(Y 2),m12 =
mean(XY ).

From this, autocorrelation is given by (mean values are easy
to calculate on-the-fly):

m12−m1m2
sqrt((m11− (m1)2)(m22− (m2)2))

Algorithm 1 describes the data length autocorrelation test.
It calculates autocorrelation values on consecutive jumping
windows, compare them with a decision threshold and finally
performs a majority vote among the consecutive decisions. Its
input parameters are the sampling series size acn, the number
of ”voters” acv and the decision threshold acthr.

B. INTERARRIVAL TIMES test

Fig. 5: Principle of INTERARRIVAL TIMES test

This test is twofold: count, within a window (length win),
the number of values above a threshold itthr1 and among these
values calculate the ratio of values over a second threshold
itthr2. According to Figure 5, this is equivalent to derive |set2|
and |set3|

|set2| . The first test checks regularity and the second
one the presence of peak. After having considered several



Algorithm 1 DATA LENGTH AUTOCORRELATION

vote counter, bot vote ← 0
m1,m2,m11, m22, m12 ← 0
value counter ← 0
while new packets arrive do

x ← waitNewV alue() {value stored at packet arrival}
if value counter ≥ 1 then

m1 ← m1 + x, m11 ← m11 + x ∗ x,
m12 ← m12 + x ∗ pv

end if
m2 ← m2 + x, m22 ← m22 + x ∗ x,
pv ← x, {storage of shifted value}
value counter ← value counter + 1
if value counter = acn + 1 then

m2 ← m2− x, m2 ← m2− x ∗ x, {correction}
m1 ← m1/n, m2 ← m2/n, m11 ← m11/n,
m22 ← m22/n, m12 ← m12/n,
d ← sqrt((m11− (m1)2)(m22− (m2)2)),
aux ← (m12−m1m2)/d
if aux < acthre then

bot vote ← bot vote + 1
end if
vote counter ← vote counter + 1
if vote counter = acv then

if bot vote > acv/2 then
return BOT

else
return HUMAN

end if
vote counter, bot vote ← 0
m1,m2,m11,m22, m12 ← 0
value counter ← 0

end if
end if

end while

possibilities, we found that checking the concentration of very
high values out of the ”regularity zone” is the most efficient
technique. Thus, if |set2| is strictly smaller than a threshold
itrt1, we have regularity, and, if |set3|

|set2| is strictly greater than
another threshold itrt2, we have presence of peak. If one of
these properties is found for the sample window, the test
returns BOT. The corresponding online algorithm is trivial.

C. DATA LENGTHS test

This test checks two properties of the sample window
(length win): the number of values over a threshold dlthr1 is
strictly smaller than a quantity dlrt1 (regularity); the number
of values over another threshold dlthr2 is strictly smaller than
another quantity dlrt2 (short length). If the sample window
exhibits both regularity and short length properties, the test
returns BOT. The corresponding online algorithm is again
straightforward.

Fig. 6: Global decision scheme’s decision tree

D. Global decision scheme

As a global detection scheme, we chose to use a decision
tree for its simplicity. The features observed to be more
discriminative have higher priority in the tree. Then, at each
packet arrival, the different features are updated until win
packets have been collected. For sake of synchronization,
parameters controlling sample window’s size have to fulfill
the constraint win = acv(acn + 1).

Once all previous tests returned their results, the global
scheme uses the decision tree (optimized through experiments)
exhibited in Figure 6 to classify the collected trace. It keeps
returning real-time decisions while the player is connected to
the game server. Its parameters are the sample window’s size
win (reused by INTERARRIVAL TIMES and DATA LENGTHS
tests) as well as those introduced in previous subsections
for each specific test. The corresponding online algorithm is
trivial and achieves linear time complexity and constant space
complexity (according to sample window’s size).

VI. PERFORMANCE EVALUATION

To evaluate our proposal, we resort to standard performance
metrics: accuracy - ratio of well classified traces -, false alarm
rate - ratio of wrongly classified traces among those classified
as bot -, detection time - trace length used to return decision, it
can be converted into actual time according to packets arrival
speed.

TABLE II: Chosen parameters values for tests

Global scheme Autocorr. Inter. times Data lengths
Param. Value Param. Value Param. Value Param. Value
win 100 acn 19 itthr1 2s dlthr1 59B

acv 5 itthr2 6s dlthr2 50B
acthr -0.15 itrt1 1 dlrt1 1

itrt2 0.3 dlrt2 7

By testing, we came up with the refined parameters’ values
mentioned in Table II and build our decision tree. However,
this training should be done again for a different game. Using
a 100 packets long trace - i.e. detection time between 18s and
1min40s -, our scheme yields about 86% accuracy and around
8% false alarm rate. These results are slightly lower than what
has been proposed up to now, but not that bad considering
the heavy constraints we had to deal with. Moreover, this
scheme fulfills the practical requirements for being used as
an exhaustive online detection tool. We summarize the main
features of our scheme in Table III.



TABLE III: Our proposal’s profile

Accuracy False
alarm r.

Type Detection
time

Limitation Specificity

86.06% 7.74% traffic
based

100 pkts
(avg 35s)

little bit
weak perf

online
detection

VII. DISCUSSIONS

We end the paper raising a couple of issues related to our
work and some others more general related to bot detection.
The first one is generality . We observed through our experi-
ments that the rationales we proposed (bots send less informa-
tion than human and interarrival times-data lengths duality)
are quite strong. Indeed, the tests combination we derived
from them leads to a significant performance improvement
compared to what which feature yiels individually (about 10%
better). In addition, studying Ragnarok traces graciously made
public by [1]’s authors (http://mmnet.iis.sinica.edu.tw/content.
html?key=ro), we found these rationales to be still meaningful.

It is worthy being noticed that collecting data lengths at
client or server side makes no difference for the obtained
values. Concerning interarrival times, there might be some
difference. However, we use large thresholds for detection (2
and 6s), which are not likely to be much affected by small
fluctuations. So, we believe that our proposal may be deployed
at server side.

We propose as future directions for our work the design of
a training method for our proposal (it is indeed required to set
parameters manually after having observed data properties at
that moment) as well as a study of the distinction between
newbie’s and veterans among human players: are players
behaving more like bots as they get more experienced?

Fig. 7: Systemic bots detection strategy

Finally, we introduce a perspective we have for our work:
a systemic defense strategy. As we already mentioned in
Section 4, our method could be used in combination with
more accurate and costly tests, as a ground layer pre-selection
tool. We also mentioned that we believe in immediate reaction
rather than long scoring process that might finish much later
with a ban. Figure 7 gives an insight of our vision. It is also
based on iterative scoring (for ban decision), but it uses the
fact that Turing tests are active (i.e. they disturb the player).
A suspicious player could then be sent more frequent tests. In
case of bots, it means either greater chances to be caught or
presence of the human behind the machine (so bothersome). In
addition, coupling our test with a CAPTCHA to catch traffic
patterns’ short variations (our detection time is small), we even
might have some success against semi-autonomous bots, who

call back humans to answer Turing tests. Finally, the idea is to
trigger tests for higher accuracy and increase their frequency
for bigger annoyance.

VIII. CONCLUSION

In this work, we have drawn a general picture of the related
research field which showed that the bot detection is not yet
apprehended as a sub part of the anti-bot defense. Then, we
have propose an online bot detection scheme based on traffic
pattern analysis exhibiting low time and space complexity and
candidate for ground layer exhaustive check, which could be
a component of a bigger anti-bot defense system.
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