Computer Networks 55 (2011) 1909-1920

Contents lists available at ScienceDirect

Computer Networks

2 |

Mputer
% fw}rks
L‘:.—J -

journal homepage: www.elsevier.com/locate/comnet

Graption: A graph-based P2P traffic classification framework

for the internet backbone

Marios Iliofotou **, Hyun-chul Kim b Michalis Faloutsos ?, Michael Mitzenmacher ¢,

Prashanth Pappu ¢, George Varghese ©

2 University of California, Riverside, CA, USA

bSeoul National University, Gwanak-gu, Seoul, Korea
€Harvard University, Cambridge, MA, USA

d Conviva, Inc., San Mateo, CA, USA

€ University of California, San Diego, San Diego, CA, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 6 February 2010

Received in revised form 18 November 2010
Accepted 29 January 2011

Available online 13 February 2011

Keywords:

Traffic classification
Behavioral-approach
Peer-to-peer

Graph mining

Monitoring network traffic and classifying applications are essential functions for network
administrators. Current traffic classification methods can be grouped in three categories:
(a) flow-based (e.g., packet sizing/timing features), (b) payload-based, and (c) host-based.
Methods from all three categories have limitations, especially when it comes to detecting
new applications, and classifying traffic at the backbone. In this paper, we propose the use
of Traffic Dispersion Graphs (TDGs) to remedy these limitations. Given a set of flows, a TDG
is a graph with an edge between any two IP addresses that communicate; thus TDGs cap-
ture network-wide interactions. Using TDGs, we develop an application classification
framework dubbed Graption (Graph-based classification). Our framework provides a sys-
tematic way to classify traffic by using information from the network-wide behavior and
flow-level characteristics of Internet applications. As a proof of concept, we instantiate
our framework to detect P2P traffic, and show that it can identify 90% of P2P flows with
95% accuracy in backbone traces, which are particularly challenging for other methods.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

An important task when monitoring and managing
large networks is classifying flows according to the
application that generates them. Such information can be
utilized for network planning and design, QoS and traffic
shaping, and security. In particular, detecting P2P traffic
is a potentially important problem for ISPs that want to
manage such traffic, and for specific groups such as the
entertainment industry in legal and copyright disputes.
Detecting P2P traffic also has particular interest since it
represents a large portion of the Internet traffic. In fact, a
resent work by Labovitz et al. [27] shows that at least

* Corresponding author. Tel.: +1 951 880 3699.
E-mail address: marios@cs.ucr.edu (M. Iliofotou).

1389-1286/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2011.01.020

20% of all Inter-domain traffic on the Internet is P2P. Even
though percentage wise P2P traffic is not the dominant
Internet traffic contributor today, its overall traffic volume
is constantly increasing. In addition, other studies using
advanced deep-packet inspection show P2P traffic to be
up to 70% of the overall volume in some networks [20].
Most current application classification methods can be
naturally categorized according to their level of observa-
tion: payload-based signature-matching methods [30,28],
flow-level statistical approaches [10,32], or host-level
methods [25,40]. Each existing approach has its own pros
and cons, and no single method clearly emerges as a win-
ner. Relevant problems that need to be considered include
identifying applications that are new, and thus without a
known profile; operating at backbone links [26,25];
and detecting applications that intentionally alter their

http://dx.doi.org/10.1016/j.comnet.2011.01.020
mailto:marios@cs.ucr.edu
http://dx.doi.org/10.1016/j.comnet.2011.01.020
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

1910 M. Iliofotou et al. / Computer Networks 55 (2011) 1909-1920

behavior. Flow-level and payload-based classification
methods require per application training and will thus
not detect P2P traffic from emerging protocols. Behav-
ioral-host-based approaches such as BLINC [25] can detect
traffic from new protocols [25], but have weak perfor-
mance when applied at the backbone [26]. In addition,
most tools including BLINC [25] require fine-tuning and
careful selection of parameters [26]. We discuss the limita-
tions of previous methods in more detail in Section 4.

In this paper, we use the network-wide behavior of an
application to assist in classifying its traffic. To model this
behavior, we use graphs where each node is an IP address,
and each edge represents a type of interaction between
two nodes. We use the term Traffic Dispersion Graph or
TDG to refer to such a graph [19]. Intuitively, with TDGs
we enable the detection of network-wide behavior (e.g.,
highly connected graphs) that is common among P2P
applications and different from other traffic (e.g., Web).
While we recognize that some previous efforts [6,9] have
used graphs to detect worm activity, they have not ex-
plored the full capabilities of TDGs for application classifi-
cation. This paper is an extension of a workshop paper [18]
and the differences will be clarified in the related work sec-
tion (Section 4).

We propose a classification framework, dubbed Grap-
tion (Graph-based classification), as a systematic way to
combine network-wide behavior and flow-level character-
istics of network applications. Graption first groups flows
using flow-level features, in an unsupervised and agnostic
way, i.e., without using application-specific knowledge. It
then uses TDGs to classify each group of flows. As a proof
of concept, we instantiate our framework and develop a
P2P detection method, which we call Graption-P2P. Com-
pared to other methods (e.g., BLINC [25]), Graption-P2P is
easier to configure and requires fewer parameters.

The highlights of our work can be summarized in the
following points:

o Distinguishing between P2P and client-server TDGs. We
use real-world backbone traces and derive graph theo-
retic metrics that can distinguish between the TDGs
formed by client-server (e.g., Web) and P2P (e.g., eDon-
key) applications (Section 2.2).

e Practical considerations for TDGs. We show that even a
single backbone link contains enough information to
generate TDGs that can be used to classify traffic. In
addition, TDGs of the same application seem fairly con-
sistent across time (Section 2.3).

o High P2P classification accuracy. Our framework instanti-

ation (Graption-P2P) classifies 90% of P2P traffic with

95% accuracy when applied at the backbone. Such

traces are particularly challenging for other methods

(Section 3.2.2).

Comparison with a behavioral-host-based method. Grap-

tion-P2P performs better than BLINC [25] in P2P identi-

fication at the backbone. For example, Graption-P2P
identifies 95% of BitTorrent traffic while BLINC identi-

fies only 25% (Section 3.3).

Identifying the unknown. Using Graption, we identified a

P2P overlay of the Slapper worm. The TDG of Slapper

was never used to train our classifier. This is a promis-

ing result showing that our approach can be used to
detect both known and unknown P2P applications (Sec-
tion 3.4).

The rest of the paper is organized as follows. In Section
2 we define TDGs, and identify TDG-based metrics that dif-
ferentiate between applications. In Section 3 we present
the Graption framework and our instantiation, Graption-
P2P. In Section 5 we discuss various practical issues. In Sec-
tion 4 we discuss related work. Finally, in Section 6 we
conclude the paper.

2. Studying the TDGs of P2P applications
2.1. Traffic dispersion graphs (TDGs)

Definition. Throughout this paper, we assume that pack-
ets can be grouped into flows using the standard 5-tuple
{srcIP, srcPort, dstIP, dstPort, protocol}. Given
a group of flows S, collected over a fixed-length time inter-
val, we define the corresponding TDG to be a directed
graph G(V,E), where the set of nodes V corresponds to the
set of IP addresses in S, and there is a link (u,?) € E from
u to vif there is a flow f € S between them.

In this paper, we consider bidirectional flows. We define
a TCP flow to start on the first packet with the sYN-flag set
and the Ack-flag not set, so that the initiator and the reci-
pient of the flow are defined for the purposes of direction.
For UDP flows, direction is decided upon the first packet of
the flow.

Visualization examples. In Fig. 1, we show TDG exam-
ples from two different applications. In order to motivate
the discussion in the rest of the paper, we show the con-
trast between a P2P and a client-server TDG. From the
figure we see that P2P traffic forms more connected
and more dense graphs compared to client-server TDGs.
In Section 2.2, we show how we can translate the visual
intuition of Fig. 1 into quantitative measures that can be
used to classify TDGs that correspond to different
applications.

Data set. To study TDGs, we use three backbone traces
from a Tier-1 ISP and the Abilene (Internet2) network.
These traces are summarized in Table 1. All data are IP
anonymized and contain traffic from both directions of
the link. The TR-PAY1 and TR-PAY2! traces were collected
from an OC48 link of a commercial US Tier-1 ISP at the Palo
Alto Internet eXchange (PAIX). To the best of our knowledge,
these are the most recent backbone traces with payload that
are available to researchers by CAIDA [5]. The TR-ABIL trace
is a publicly available data set collected from the Abilene
(Internet2) academic network connecting Indianapolis with
Kansas City. The Abilene trace consists of five randomly se-
lected five-minute samples taken every day for one month,
and covers both day and night hours as well as weekdays
and weekends.

Extractingground truth. We used a Payload-based Classi-
fier (PC) to establish the ground truth of flows for the

! The authors thank CAIDA for providing this set of traffic traces.
Additional information for these traces can be found in the DatCat, Internet
Measurement Data Catalog [8], indexed under the label “PAIX".

M. Iliofotou et al./ Computer Networks 55 (2011) 1909-1920 1911

-

I G,
’ﬂ"i‘,,’d) [
""‘“.”LQ"'”

95}

(@
£

Y)
g ,is, O‘//O'O Ol\‘O
- o
8 Qo\o
\
L © S
‘.) \Z)
¥ 0 0 0le %
o el
—eo._
" Q 62 %

4 $oo
;S }5 g 000] 0 po—00—0
— - o -
000 *0@ o 00 000 *0@
—00—0 " .0 ¢ 00—
000 "o 0 o 00°
000 "o 0 g0

—0
00, .00 ©
0%, .0
00

004 .04 00
0% .0 0%
00 o090 O

094 -0
00 o
0
0000
0000

?
et
0000 Oio
o0
-0

000000
000000 9 o0

o
000"
o 0000000

(b) The HTTPS TDG (client-server application).

Fig. 1. Two TDG visualization contrasting a P2P (top) with a client-server application (bottom). Largest component is with bold (black) edges - hence the
graphs are best viewed on a computer screen or a colored print-out. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Table 1

Set of backbone traces from the Cooperative Association for Internet Data
Analysis (CAIDA). Statistics for the TR-ABIL trace, are reported only for the
first five-minute interval since IPs were anonymized differently at each
five-minute sample.

Name Date/time Duration Flows
TR-PAY1 2004-04-21/17:59 1h 38,808,604
TR-PAY2 2004-04-21/19:00 1h 37,612,752
TR-ABIL 2002-09/(N/A) 1 month 2,057,729

TR-PAY1 and TR-PAY2 traces. Both traces contain up to
16 bytes of payload in each packet, thereby allowing the
labeling of flows using the signature matching techniques
described in [26,25]. Running the PC over the TR-PAY1
and TR-PAY2 traces we find 14% of the traffic to be P2P,
27% Web, 7% DNS, and the rest to belong to other applica-
tions. A detailed application breakdown is summarized in
Table 2. In the table we further report the traffic informa-
tion for the top six P2P applications with the highest

1912 M. Iliofotou et al. / Computer Networks 55 (2011) 1909-1920

Table 2

Application breakdown for TR-PAY1 and TR-PAY2 traces. Values in paren-
thesis show the percentage of each P2P application over the entire
identified P2P traffic (All-P2P).

Name % in flows % in bytes % in packets
Gnutella 0.95(6.78) 0.17(1.59) 0.81(6.32)
eDonkey 2.96(21.16) 2.22(21.17) 2.84(22.21)
FastTrack 0.55(3.92) 0.74(7.10) 0.97(7.61)
Soribada 7.76(55.44) 0.07(0.63) 0.97(7.63)
MP2P 0.41(2.93) 0.01(0.14) 0.07(0.53)
BitTorrent 0.60(4.26) 4.59(43.81) 4.37(34.24)
All-P2P 13.85 9.19 12.10

Web (80/443) 27.45 41.99 35.51
SMTP 1.65 1.10 2.431

DNS 6.65 0.32 1.586
Games 0.71 0.54 2.84
Unknown 0.97 1.98 3.22
No-Payload 28.06 0.46 6.04

Rest 20.66 44.42 36.27

number of flows in our data set. These six applications con-
tribute ~95% of the flows and ~75% of the overall P2P by-
tes. In our traces, we also have flows by P2P applications
that are not longer in use, such as WinMX, Direct Connect,
Goboogy, Ares, SoulSeek, and EarthStation. We observed
that some of these protocols were used for transferring
very large files and contributed many bytes, but their over-
all number of flows was significantly lower. In our evalua-
tion we include all P2P flows.

For our study, we remove the 1% of traffic that remained
unknown and the 28% that contained no payload. The
small number of unknown flows is strongly correlated
with the small number of encrypted flows in our traces.

2.2. Identifying P2P TDGs

Identifying the right metrics to compare graph struc-
tures is a challenging question that arises in many disci-
plines [31]. Our approach is to consider several graph
metrics, each capturing a potentially useful characteristic,
until a set of metrics is found that distinguishes the target
graphs.

To select an appropriate set of metrics, we generate a
large number of TDGs using all our traces (Table 1), thus
observing TDGs over two different locations at the back-
bone. For the TR-PAY1 and TR-PAY?2 traces, we use the pay-
load-based classifier (PC) in order to select which flows
belong to each TDG. Since the TR-ABIL trace does not have
any payload information, we use port numbers [26] to as-
sign flows to applications. We can use port numbers for the
TR-ABIL trace since it was collected in 2002 where most
P2P applications used their default port numbers [13,23].
We only use the TR-ABIL trace to verify our TDG observa-
tions over a second location in the backbone and we do
not use it in the final evaluation of our classifier. By using
the month-long TR-ABIL trace, we can study the consis-
tency of TDGs over different times of the day and over
weekdays and weekends.

We observe TDGs over five-minute intervals. This inter-
val length gives good classification results and stability of
TDG metrics over time as we show later in this section.
For each TDG we generate a diverse set of metrics. Our

metrics capture various aspects of TDGs including the de-
gree distribution, degree correlations, connected compo-
nents, and distance distribution. For additional details
about these metrics we refer the reader to [19,31].

To select the right set of metrics we use various graph
visualizations and trial and error. Finding a less ad hoc ap-
proach is beyond the scope of this work. Two TDG visuali-
zation examples are shown in Fig. 1. We see that FastTrack
(P2P) has a denser graph than HTTPS, or a higher average
degree, where the average node degree k is given by
k = 2|E|/|V].

We utilize two other metrics that capture the direction-
ality of the edges in the graph and the distances between
nodes. The directionality is useful since we know that pure
clients only initiate traffic, pure servers should never initi-
ate traffic, and that some P2P nodes play both roles. To cap-
ture this quantitatively, we define InO to be the percentage
of nodes in the graph that have both incoming and outgo-
ing edges.

The distance between two nodes is defined as the
length of their shortest path in the graph. The diameter
of a graph is defined as the maximum distance between
all pairs of nodes, which is sensitive as a metric [31]. For
a more robust metric, we use the effective diameter (EDi-
am), which we define as the 90-th percentile of all pairwise
distances in the graph.

We show the high graph diameter of the BitTorrent P2P
TDGs in Fig. 2. The graph represents the BitTorrent interac-
tions between 3000 nodes from the TR-PAY1 trace. The
visualization is suggestive of a spider’s web with large
paths between nodes at opposite edges. This intuition is
precisely captured by the large value of the effective graph
diameter. In general TDG visualizations are suggestive,
but the metrics make the intuitions precise and allow
classification.

From our measurements, we empirically derive the fol-
lowing two rules for detecting P2P activity. Rule 1: k > 2.8
and InO > 1%; Rule 2: InO > 1% and EDiam > 11. With these
simple rules, we can correctly identify all P2P TDGs from
both backbone locations (Abilene backbone and Tier-1
ISP). Intuitively, P2P hosts need to be connected with a
large set of peers in order to perform tasks such as answer-
ing content queries and sharing files, which can explain the
higher average degree compared to client-server applica-
tions. An additional characteristic of P2P applications is
the duality of roles, with many hosts acting both as client
and server. The duality of roles is in turn captured by the
high InO value. We further speculate that the decentralized
architecture of some P2P applications (such as BitTorrent),
can explain the high diameters in some P2P TDGs.

We do not claim that our thresholds are universal, but
our measurements suggest that small adjustments to these
simple parameters allow our methodology to work on dif-
ferent backbone links.

Distinguishing collaborative applications from P2P: Some
well-known applications other than P2P exhibit collabora-
tive behavior, such as DNS and SMTP. This is not surprising
since in these applications servers communicate with each
other and with other clients (high k), and servers act both
as clients and servers (high InO). This is exactly what our
metrics are set out to detect. Next, we outline two

M. Iliofotou et al./ Computer Networks 55 (2011) 1909-1920 1913

190068 E8¢

00 .

ﬂ,?[{;(
f‘é"

o
oo
e——

46/&‘0

J3535¢85508

~o-
?
3

o
ep
Y/

f. e
[;?f \

1ty
%
f\o

Vv

Inyllie .
Hof
IIEI M

e TN/

Fig. 2. Graphical representation of the BitTorrent TDG with 3000 IPs, showing the formation of long paths connecting P2P hosts. The largest connected

component is highlighted with darker color edges.

approaches that can help to separate between collabora-
tive applications (e.g., DNS) and P2P: (1) One solution is
to rely on port numbers or payload information for this
task. In fact, it has been reported recently [26] that port
numbers are fairly accurate in identifying such legacy
applications, although they fail to identify P2P and other
applications with dynamic use of port numbers. Therefore,
one could use legacy ports to pinpoint and isolate such col-
laborative applications and then use graph metrics on the
remaining traffic. In addition to port inspection, we can
also examine the payload of a flow in order to verify that
it follows the expected application-layer interactions. (2)
In a recent work on dynamic graphs [16], we show that
measuring how much TDGs change over time gives addi-
tional information about the nature of the applications.
In particular, we observed that P2P TDGs are more dy-
namic (i.e., how frequently nodes and edges change over
time) than legacy applications, such as DNS. If the classifi-
cation problem at hand requires this further separation, we
can incorporate such dynamic techniques in Graption.

2.3. Practical considerations for TDGs

2.3.1. Stability of metrics over time

If thresholds derived from TDGs changed significantly
with time, then the classifier must be trained constantly
and that would detract from its value. Fortunately this
does not appear to be the case. We show the stability of
TDGs in time and space using traces from different points
in time at two different backbone locations for Abilene
and a commercial Tier 1 ISP (Section 2.2).

To test stability over time, we measured P2P TDGs from
our longest trace (TR-ABIL) that span over one month and
include samples taken over day and night hours, and both
weekdays and weekends. To the best of our knowledge
such month-long traces with payload are not available.
Stability was also observed in all the one-hour long traces
(TR-PAY1, TR-PAY2).

Fig. 3 summarizes the stability study for TR-ABIL show-
ing the average degree metric. As we see, average degree
takes values in a small range over the entire month. Sorib-
ada tends to have very small graphs ranging from 30 to
1000 nodes and hence the higher variability. Stability
was also observed for the diameter and InO metric with
the figures not included for brevity. For this study, we used
TDGs representing five-minutes of traffic. In Section 2.3.2

30 T T T T T

min =23.73

= = =

0 Gnutella FastTrack Soribada WinMX eDonkey MP2P

=

—T T T T T T T T T T T T T
A S T T S S S T S S S S

Fig. 3. The average degree for various P2P protocols over one month in
trace TR-ABIL. Candle sticks show the maximum and minimum recorded
values together with the average (horizontal line) and * the standard
deviation. For visualization purposes, for the MP2P application we show
only the minimum value which is very high (23.73).

1914 M. Iliofotou et al. / Computer Networks 55 (2011) 1909-1920

we show experiments with TDGs where we vary the obser-
vation interval from five seconds to 15 min. Note that Bit-
Torrent is not shown in Fig. 3 since it was not well-known
in 2002 and resulted only in a handful of flows in the TR-
ABIL trace.

2.3.2. Selecting the interval of observation

The effect of the observation interval on the graph metrics.
We observe that by increasing the observation interval,
graph metrics are more stable across successive TDGs of
an application. To show this, we measure the variation of
all our graph metrics over time as a function of the interval
of observation. We vary the interval from one second up to
15 min. For each interval length, we generate consecutive
graph snapshots with non-overlapping time intervals. For
each interval, we extract the graph and calculate the
average degree, InO, and effective diameter metrics.

We examine the variability of each metric over all inter-
vals of observation. We use the commonly-used range met-
ric, which is the difference between the maximum and
minimum observed values over all intervals for each graph
metric. For each metric, we then normalize the range by the
average value calculated over the time series. This normal-
ization makes the range for different metrics somewhat
comparable. For each application, we report the average
range over all three graph metrics, and we plot this average
range versus the duration of the observation interval in
Fig. 4. Our experiments showed very high range values for
intervals smaller than 60 s. The range shows significant de-
crease for intervals larger than a minute. Increasing the
interval from five minutes to 10 and 15 does not signifi-
cantly effect the range. This trend is shown in Fig. 4, where
we report the average range over all metrics for a set of our
applications. Even though we have variability in our results,
there was a clear trend in all our measurements. Similar
trends we observed in all our traces (Table 1). For the rest
of our study, we use five minute intervals.

3. The Graption framework

The Graption traffic classification framework consists of
the following three steps.

25 ‘ ‘
i DNS —5—
EDONKEY —®—
FASTRACK —o—
2 GNUTELLA e
HTTP —a—
NTP d
: POP3 - -
15 - Ve SMTP -~ v 7|
a MP2P —o—

Variation Range

0 L L L L L L L L
0 100 200 300 400 500 600 700 800 900
Interval Length (sec)

Fig. 4. The effect of changing the interval of observation for TDGs ranging
from five seconds up to 15 min over a large set of protocols. To reduce
variability we can choose to use longer intervals. After 300 s the reduction
in variability is not significant.

Step 1: Flow isolation. The input is network traffic in the
form of flows as defined in Section 2. The goal of
this first optional step is to utilize external infor-
mation to isolate any flows that can already be
classified. This knowledge could be based on pay-
load signatures, port numbers, or IP address (e.g.,
exclude flows from a particular domain such as
google.com).

Step 2: Flow grouping. We use similarity at the flow and
packet level to group flows. The definition of sim-
ilarity is flexible in our proposed methodology. We
can use flow statistics (duration, packet sizes, etc.)
or payload if this is available. Eventually, the out-
put of this step is a set of groups with each group
ideally containing flows from a single application
(e.g., Gnutella, NTP, etc.). However, at this step,
the exact application of each group is not known.

Step 3: Group classifier. For each group of flows, we con-
struct a TDG. Next, we quantify each TDG using
various metrics. The classifier uses these metrics
to identify the application for each group of flows.
For the classification decision, we use a set of rules
which in general depend on the focus of the study.

Although this paper focuses on P2P detection, we be-
lieve Graption can be used for general application classifi-
cation by choosing metrics and parameters appropriately.
We next describe how we specialized Graption to detect
P2P traffic (Graption-P2P).

3.1. Implementation details of Graption-P2P

Step 1: This is an optional step in our methodology. Exper-
iments without this step are discussed later in the
section. Recent work [26] suggests that port-based
classification works very well for legacy applica-
tions, as legacy applications use their default ports
and tunneling of P2P at such ports is not very com-
mon. Thus, in this study, we isolated flows with
port 80 for Web, port 53 for DNS, and port 25 for
SMTP. These applications turn out to be about
65% of the total number of flows. In our traces,
the proportion of P2P actually using one of these
ports is as low as 0.1%.

Step 2: To implement flow grouping we use the fact that
application-level headers are likely to recur across
flows from the same application. Therefore, pay-
load similarity can be used to group flows. In Grap-
tion-P2P, we only use the first sixteen bytes from
each flow. As we show, sixteen bytes are sufficient
to give very good classification results. This obser-
vation agrees with findings in [30,28]. Even though
we use the payload bytes, our grouping is agnostic
to application semantics, as each byte is consid-
ered as a single independent categorical feature.
We consider each byte as a single categorical fea-
ture in the range {0,1,...,255}.

The flow grouping step comprises two sub-steps: clus-
ter formation and cluster merging.

M. Iliofotou et al./ Computer Networks 55 (2011) 1909-1920 1915

(a) Forming clusters. Given the set of discriminating fea-
tures, the next step is to cluster “similar” flows together.
We use the term cluster to describe the outcome of an ini-
tial grouping using the selected features. Clusters may be
merged in the next function of this step to form groups,
which produces the final output.

Feature-based clustering is a well-defined statistical
data mining problem. For this task we used the popular
K-means algorithm [38]. This algorithm has been com-
monly used for unsupervised clustering of network flows
[10,30], with very good results and low computational
cost. K-means operates with a single parameter that se-
lects the number of final clusters (k). As we show later in
our evaluation, our classifier gives very good results over
a large range of k.

The similarity between two flows is measured by the
Hamming [38] distance calculated over the 16 categorical
features (i.e., the payload bytes). Even though more in-
volved similarity measures such as edit-distance (also
known as Levenshtein distance) exist, Hamming distance
has been used successfully before [15] and performs very
well in our application.

(b) Cluster merging. During clustering, it is likely that the
same application generates multiple clusters. For example,
many P2P protocols exhibit a variety of interaction pat-
terns, such as queries (UDP flows) and file transfers (TCP
flows), each with significantly different flow and packet
characteristics [23]. This motivates mergings clusters that
we expect to belong to the same application into groups.
This grouping provides a more complete view of the appli-
cation and aids in understanding the structure of the P2P
protocol, as we show in Section 3.2.

Cluster merging cannot be based on the chosen set of
flow-level features that were already used to create the
clusters originally. Instead, in the case of a P2P protocol,
it is natural to assume that the TDGs corresponding to each
cluster of the same protocol would share a large number of
common nodes (IP addresses).

Based on these observations, we use an Agglomerative
(Hierarchical) Clustering Algorithm that recursively
merges clusters with significant similarity in IP addresses.
We used the following metric to calculate similarity be-
tween clusters: Sim(Cy,C;) = (Number of flows having their
source or destination IPs present in both clusters)/(The
number of flows of the smaller cluster). The cluster merg-
ing process starts by hierarchically merging clusters with
high similarity and stops when the similarity between all
new cluster pairs is below a similarity threshold (ST). As
we show later in our evaluation, our classifier gives very
good results over a large range of similarity thresholds.

Step 3: The outcome of the previous step is a set of groups
of flows, with each group consisting of flows that
we hope stem from a single application. In order
to classify each group, we generate a TDG on the
group in the same way as described in Section 2.
Each group yields a TDG that can be summarized
using graph metrics. To identify P2P TDGs, we
used the rules extracted from Section 2.2. When
a group is labeled as P2P then all the flows of that
group are classified as P2P flows.

3.2. Evaluating Graption-P2P

To evaluate Graption-P2P, we use traces TR-PAY1 and
TR-PAY2, where we have the ground truth using the pay-
load classifier (Section 2). We compute the True Positives,
False Positives, and False Negatives. The True Positives
(TP) measures how many instances of a given class are cor-
rectly classified; the False Positives (FP) measures how
many instances of other classes are confused with a given
class; and the False Negatives (FN) measures the number of
misclassified instances of a class. In our comparisons, we
used the following standard metrics: Precision (P), defined
as P=TP/(TP + FP); Recall (R), defined as R = TP/(TP + FN);
and the F-Measure [38], defined as F=2P - R/(P + R), com-
bining P and R. In all our results, the metrics above report
the classification performance in terms of flows.

3.2.1. Forming clusters

The K-means algorithm generates k clusters and assigns
each flow to a different cluster. We first test the effective-
ness of K-means to form pure clusters. A pure cluster will
ideally contain flows from a single application. To label the
clusters, we use the dominant heuristic [3]. In this heuristic,
using the ground truth of flows we label each cluster as
belonging to the application with the majority of flows in
the cluster. All the flows of a cluster are then classified to
belong to this dominant application.

Using the dominant heuristic we assign clusters to
applications and calculate the precision (P) and recall (R)
for different values of k. The clustering results as we in-
crease k for both traces are shown in Fig. 5. We observe
that with sufficiently large k (>120) we achieve very good
results with P and R above 90%. By increasing k, on one
hand we have more “pure” clusters but on the other we
make the cluster merging step harder. In the extreme case,
each cluster will contain a single flow giving 100% P and R,
but making cluster merging challenging. We will return to
this topic later in Section 3.5.

The Graption-P2P classifier is not sensitive to the exact
value for k, since we do not require that each application
maps to exactly one cluster. Instead, we only need enough
clusters so that flows from different applications do not
share a cluster. Hence, it is reasonable to slightly overesti-

96

94

92

90

88

86

84 |);]
] Precision (TR-PAY1)

8o | : Recall (TR-PAY1)

Precision (TR-PAY2) ---

80))) Recall (TR-PAY2) ----

0 40 80 120 160 200 240
Number of Clusters (k)

Clustering Performance for K-means(%)

eomp

Fig. 5. Evaluating K-means: With sufficiently large k (>120) K-means can
efficiently separate the flows of different application. All classification
metrics are in terms of flows.

1916

mate the k. As we show next, with k in the range 120-240
Graption-P2P has high classification performance.

3.2.2. Identifying P2P traffic

Using Graption-P2P, we achieve high flow P2P F-Mea-
sure over a range of values of k (K-means) and similarity
thresholds (ST). We show this in Fig. 6, where we vary
the ST from 0.01 to 1 and use a sufficiently large k (see
Fig. 5). All experiments are averaged over each disjoint five
minute interval of both traces.Intuitively, by using a very
large ST, the clusters of an application are not grouped to-
gether, which results in TDGs that are harder to classify as
P2P. On the other hand, with a very small ST, clusters
belonging to different applications are merged together
leading to poorer classification performance. The results
in Fig. 6 show that we achieve good classification perfor-
mance (>90% F-Measure), over a large range of similarity
thresholds and number of clusters (k).

In Fig. 7, we compare our approach with labeling each
cluster using the ground truth (i.e. without merging any
clusters and labeling each cluster using the dominant heu-
ristic). Intuitively, for a given clustering of flows, the
ground truth shows the best that our cluster labeling
mechanism can achieve. For merging, we use a ST of 0.5.
From Fig. 7, we see that Graption-P2P deviates only slightly
from labeling clusters using the ground truth. In the same
plot, we also compare Graption-P2P without the cluster

100

F-Measure of Graption-P2P (%)

60

95

920

80

75

70 -

65 -

85| &

k=120 —=—

'
' k=160
'
!

k=240 -~

0

Fig. 6. Graption-P2P achieves > 90% flow F-Measure over a large range of

0.1

02 03 04 05 06 07 038
Similarity Threshold

similarity thresholds and number of clusters (k).

100
S
o
N
o
s 8 |
:‘_i:' Ground Truth —&—
& 80 Graption-P2P: Merging @ -
5 Graption-P2P: No Merging - s -
e 75T ,
2 A
g 70 e |
L 65t |
A
60)
80 100 120 140 160 180 200 220 240

M. Iliofotou et al. / Computer Networks 55 (2011) 1909-1920

merging step, highlighting the benefit of merging clusters
of the same application together.

Using a ST of 0.5 and k = 160, Graption-P2P achieves
above 90% Recall and above 95% Precision over all disjoint
five minute intervals for both traces. To apply Graption-
P2P to other backbone links, the same selection process
can be repeated to adjust the values of ST and k. Our exper-
iments show that the classification performance can de-
grade with a bad choice of parameters. However, as
shown in Figs. 5-7, for reasonable choices for k and ST,
our method provides very good results. The Graption
framework is flexible enough to incorporate state-of-the-
art clustering methods.

3.3. Comparison with BLINC [25]

We used BLINC to classify traffic for both TR-PAY1 and
TR-PAY2 traces. BLINC was optimized after several trial
and error efforts to achieve its best accuracy for classifying
P2P traffic over these traces. A detailed description of the
selection process for the parameters for BLINC is provided
in [26]. As reported by Kim et al. [26], tuning the 28 param-
eters of BLINC is a time consuming process. This is because
small changes to the thresholds have a significant effect on
the classification results.

The Recall and Precision for BLINC are 84% and 89%
respectively compared to 90% and 95% of our method.
The classification performance per P2P protocol for both
BLINC and Graption-P2P are shown in Fig. 8. Given that
both methods do not distinguish between particular P2P
protocols (e.g., Gnutella vs BitTorrent), it only make sense
to report the portion of identified traffic (recall) for each
protocol. Graption-P2P can identify more traffic for all
P2P applications tested with the exception of MP2P. We
can see from Fig. 3 that MP2P has a much higher average
node degree than the other P2P applications which can ex-
plain the high performance of BLINC over this protocol.
Going back to Fig. 8, we see that BLINC has significantly
lower performance for some P2P applications. For example,
Graption-P2P detects 95% of BitTorrent traffic, while BLINC
detects only 25%! In addition, Graption-P2P detects 91% of
the flows from the three popular P2P applications {BitTor-
rent, Gnutella, and eDonkey} while BLINC detects only 73%.

Our experiments suggest that BLINC and possible other
behavioral-host-based approaches work well when applied

[0 Graption-P2P
[l BLINC

Recall (%)

Clusters (k) in K-means

Fig. 7. Graption-P2P compared to cluster labeling based on ground truth.
Results are also compared with and without cluster merging.

BitTorrent Gnutella eDonkey FastTrack MP2P Soribada

Rest

Fig. 8. The percentage of P2P flows detected by Graption-P2P and BLINC.

Flow precision for Graption-P2P is 95% and for BLINC is 89%.

M. Iliofotou et al./ Computer Networks 55 (2011) 1909-1920 1917

at the edge, where a large fraction of host flows are observed
and hence enough evidence is collected to profile each node.
However, this is not always true for backbone monitoring
points which can explain BLINC's lower performance. These
observations are also supported by findings in [26].

We acknowledge that BLINC provides a methodology
for detecting traffic from multiple classes of applications
(e.g., HTTP, FTP, Chat, etc.) and not only for P2P. Our results
only show that Graption-P2P does better in P2P detection.

3.4. Identifying the unknown

Our goal here is to answer the following question: Can
Graption identify ports used by unknown P2P applications
in our traces? To achieve this, we configure Graption as fol-
lows. For step 1, we isolate legacy flows using the same ap-
proach as in Graption-P2P. In addition, we isolate flows
from ports that belong to known P2P applications (e.g.,
port 1214 for FastTrack). At step 2, we cluster flows using
their port number. This produces one cluster for each dis-
tinct port in the trace. For merging clusters, we use the
same similarity threshold as in the Graption-P2P configu-
ration. Finally, for classifying each group (step 3) we use
the same rules as in Graption-P2P. We will refer to this
configuration as Graption-P2P-Ports.

By manually inspecting the TDGs that Graption-P2P-
Ports reports as P2P, we discovered interesting behaviors
in the Abilene Trace (TR-ABIL). Our simple method was
able to detect three ports (2002, 4156, 1978) that we ini-
tially thought were false positives. On further research,
we found that these three ports were used by the Slapper?
worm. Slapper has been reported to use these ports in order
to form a P2P botnet overlay for launching DDoS attacks.
Even though Graption-P2P-Ports was never explicitly
trained to detect the Slapper overlay, it used the TDG profile
of known P2P applications (e.g., eDonkey, Gnutella, etc.) to
identify it. This is an advantage of using network-wide
behavior to classify traffic.

Graption-P2P-Ports also captured an unusual behavior of
IPs executing traceroute to each other forming a near cli-
que. Such highly connected group of hosts was not observed
in any of the P2P applications present in our traces. We spec-
ulate these interactions are by host performing active net-
work measurements inside the Internet2 (Abilene)
backbone. Given this unique connection pattern, we can al-
ways isolate such unusual behavior and distinguish it from a
potentially new P2P application. Besides the active mea-
surement trafficand the flows from the Slapper worm, Grap-
tion-P2P-Ports reported only 0.3% other flows as P2P. With
no payload information, we were not to able to manually
match these flows to a known exploit or P2P application.

3.5. Other Graption configurations

For completeness, we show here preliminary results
with other system configurations assuming that access to
payload is limited or isolation cannot be used. We proceed
by describing these configurations.

2 http://www.cert.org/advisories/CA-2002-27.html

Graption-P2P-NI: without isolation. This is the same con-
figuration as the Graption-P2P, but without using isolation.
By increasing k in K-means above 300 we achieve good re-
sults; >92% precision and >85% recall. A larger k was to be ex-
pected, since by including all the Web, SMTP, and DNS flows
the total number of signatures increased as well. Our preli-
minary experiments showed that by increasing the number
of clusters, it makes the cluster merging step more difficult.
This observation highlights the advantage of using isolation.

Graption-P2P-NP: using only flow-level features. This con-
figuration is the same as the Graption-P2P, but assuming
that payload and port numbers cannot be used. We achieved
>90% precision and >88% recall over a range of k and similar-
ity thresholds. For each flow, we extracted more than 40
flow features ranging from packet size information (size of
first 10 packets, max/min packet size, etc.), timing informa-
tion (flow duration, min and max inter-packet gap, etc.), TCP
flags, total volumes in bytes, number of packets, etc. In order
to test the relevance of each feature we applied the Informa-
tion Gain Ranking Filter [38] over various time intervals. For
this configuration, we used the most prominent features:
packet size information (i.e. min, max, and the size of the
first five packets) and protocol (UDP or TCP). A recent work
[11]also supports our observation that packet sizes are good
features to cluster/classify network flows.

4. Related work

This journal paper extends our six-page workshop ver-
sion [18]. In addition to the work presented in the work-
shop version, we here include: (a) A study on practical
considerations for using TDGs (see Section 2.3, Figs. 3 and
4).(b) We provide additional details regarding our data sets
and our classification results (see Sections 2.2 and 3.5,
Fig. 2, and Table 2). (c) We provide a more detailed compar-
ison with BLINC (see Section 3.3 and Fig. 8). (d) We include
additional experiments showing how Graption can be used
to detect previously unknown traffic (see Section 3.4).

4.1. Traffic classification

As an alternative to port-based methods, some work use
payload [30,28]. Other approaches use machine learning
(ML) algorithms to classify traffic using flow features
(e.g., packet sizes). For an exhaustive list and comparison
of ML algorithms we refer the reader to [32,26]. The prob-
lem of training a ML algorithm on one trace and applying it
on another was recently addressed in [37]. Even though
supervised solutions to traffic classification are continu-
ously improving, all supervised methods require per appli-
cation training and will thus not detect traffic from new
applications. Our work has more in common with unsuper-
vised methods which group similar flows together. All pre-
vious methods [3,29,10] require manual labeling of
clusters. Our work bridges this gap by providing a method
to automatically label clusters of flows based on their net-
work-wide behavior.

In BLINC [25], the authors characterize the connection
patterns (e.g., if it behaves like using P2P) of a single host
at the transport layer and use these patterns to label the

http://www.cert.org/advisories/CA-2002-27.html

1918 M. Iliofotou et al. / Computer Networks 55 (2011) 1909-1920

flows of each host. BLINC uses graph models called gra-
phlets to model a host’s connection patterns using port
and IP cardinalities. Unlike TDGs, graphlets do not repre-
sent network-wide host interaction. In some sense, TDGs
represent a further level of aggregation, by aggregating
across hosts as well. Thus it is perhaps fair to say that while
BLINC hints at the benefit of analyzing the node’s interac-
tion at the “social” level, it ultimately follows a different
path that focuses on the behavior of individual nodes. As
we show, our approach performs better than BLINC in our
backbone traces (see Section 3.3). Similar to BLINC, other
host-based methods [2,22] target the identification of P2P
users inside a university campus (i.e., network edge). The
connection patterns of neighboring host (e.g., their degree
distribution) were also used as features to profile network
hosts [1]. Unlike Graption-P2P, in [2,22,25,1] they do not
use network-wide host interaction. In [7], the authors use
a port-based method to identify P2P users, using their tem-
poral appearance and connection patterns in a trace.

A different approach to host profiling was introduced by
Trestian et al. [36]. They used readily available information
from the Web to classify traffic using the Google search en-
gine. They show very good results for classifying flows for leg-
acy application, but their results are not promising for P2P
detection because of the dynamic nature of P2P IP hosts.
Our method can thus be used to complement the workin [36].

The problem of classifying traffic from applications that
use sophisticated obfuscation techniques is the topic in
[17]. The solution proposed uses advanced community
detection algorithms to group related hosts together. It
then requires external seed information about the applica-
tion used by few hosts in each group in order to classify the
entire group. The solution in [17] is very different from this
work since it does not classify applications using network-
wide behavioral informatio. We believe that Graption-P2P
can provide a way to identifying P2P communities without
relying on external seeding information.

4.2. Worm detection

Graphs have been used for detecting worm activities
within enterprise networks [9]. Their main goal was to de-
tect the tree-like communication structure of worm prop-
agation. This characteristic of worms was also used for
post-mortem trace analysis (for the identification of the
source of a worm outbreak, the so-called patient zero)
using backbone traces [39]. More recent studies use graph
techniques to detect hit-list worms within an enterprise
network, based on the observation that an attacker will al-
ter the connected components in the network [6].

4.3. Measurements on network-wide interactions

Statistical methods are used in [40] for automating the
profiling of network hosts and ports numbers. The connec-
tivity behavior and habits of users within enterprise net-
works is the focus of many papers, including [35]. In [34],
the authors study P2P overlays using passive measurements,
but target mainly the profiling of P2P hosts. The most resent
work on network-wide interactions in by Jin et al. [21]. In
their work [21], they use graph-partitioning methods to ex-

tract and study the evolution of smaller communities within
a TDG. None of the above papers targets P2P detection.

5. Discussion

Enhancing the isolation step. To improve isolation we
can enforce payload inspection in addition to port-based
filtering. For example, we can test all DNS flows at port
53 to see if they also have a DNS payload signature or if
another protocol is tunneling its traffic under the DNS
port. If payload is encrypted, then we can choose to use
flow-level feature such as packet sizes [26] or white-
listed IP addresses [36].

Applying our framework to other backbone locations. In our
study we show that is feasible to correctly identify P2P TDGs
from all our backbone traces using a single set of thresholds.
In other words, we do not use different classification thresh-
old for each individual trace. Even though TDGs from differ-
ent locations may have differences between them, in our
study, we always find TDGs from the same family (e.g.,
P2P) to have similar characteristics (e.g., high average de-
gree). In Section 2.2, we explicitly state that our thresholds
are not universal. Therefore, it might not always be possible
to use exactly the same thresholds to identify particular
TDGs in all backbone locations. Nevertheless, our measure-
ments suggest that small adjustments to our simple param-
eters (see Section 2.2) allow our methodology to work on
different backbone links.

TDG formation and packet sampling. Packet sampling is
used in order to reduce the overhead of processing every sin-
gle packet by a monitoring system. Sampling effectively re-
duces the overall number of observed flows by the monitor.
Less overall flows translates to fewer observed edges over
time when forming TDGs. In our experiments in Section
2.3, we observe that the longer we collect edges for a TDG
(i.e., applying a longer observation interval) the number of
edges and the stability of metrics increases. With sampling,
we believe the curves in Fig. 4 may change. In particular, in
order to reduce TDG variability in the presence of sampling,
the monitoring interval will need to be increase.

Encryption in P2P applications. If an application encrypts all
traffic classification methods using payload [33,28,15, 30] will
be out-dated. Note, however, that it has been shown before [4]
that even if an application encrypts its traffic there are ways to
distinguish it from other flows. To show that even in the case
where P2P encryption becomes prevalent our framework will
still be useful, we also experimented with Graption-P2P-NP
using only flow level features and observed good results with
recall and precision of above 88% in both traces.

Obfuscation of P2P applications at multiple levels. In the fu-
ture, obfuscation might become more common. In the case
where IPsec (encryption up to Layer-4 headers) becomes
prevalent, transport layer [24], and host-based [25] meth-
odologies will most likely not work. If P2P protocols start
using polymorphic blending methods [12,14] to masquerade
their traffic at the packet (e.g., packet sizes) and payload le-
vel toresemble a legacy application (e.g., Web), then all cur-
rent machine learning [32] methods will not work. In such a
scenario, TDGs (IP-to-IP graphs) might still prove to be use-
ful because the interaction patterns seem hard to hide.

M. Iliofotou et al./ Computer Networks 55 (2011) 1909-1920 1919

6. Summary and conclusions

The underlying theme of our work is to go beyond just
monitoring individual packets, flows, or hosts, to also mon-
itoring the interactions of a group of hosts. Towards this
end, we introduce TDGs and show their potential to gener-
ate novel tools for traffic classification. Based on TDGs, we
developed Graption, a graph-based framework, which we
then specialize (Graption-P2P) for the detection of P2P
applications. We show that Graption-P2P classifies more
than 90% of P2P traffic with above 95% precision when
tested on real-world backbone traces. While our best re-
sults are obtained assuming access to some initial payload
bytes, Graption still performs well (90% precision with 88%
recall) even when payload is not used. We believe the net-
work-wide characteristics of P2P traffic (e.g., InO, average
degree, and diameter) are not as easy to hide without sig-
nificantly altering P2P functionality.

Acknowledgments

This work was supported partly by NSF NECO 0832069,
a CISCO URP grant, ARL CTA W911NF-09-2-0053, by NAP
of Korea Research Council of Fundamental Science and
Technology, and the ITRC support program [NIPA-2010-
C1090-1011-0004] of MKE/NIPA. Michael Mitzenmacher
was supported in part by NSF grant CNS-0721491 and re-
search grant from CISCO. George Varghese was supported
by grants from NSF and CISCO. The SDSC’s TeraGrid and
compute resources are supported by the NSF grant CONMI
CRI-0551542. Support for CAIDA’s Internet traces is pro-
vided by the National Science Foundation, the US Depart-
ment of Homeland Security, and CAIDA Members.

References

[1] E.G. Allan, W.H. Turkett, E.W. Fulp, Using network motifs to identify
application protocols, in: IEEE GLOBECOM, 2009.

[2] G. Barlett,]. Heidemann, C. Papadopoulos, Inherent behaviors of on-
line detection of peer-to-peer file sharing, in: IEEE GI, 2007.

[3] L. Bernaille, R. Teixeira, K. Salamatian, Early application
identification, in: ACM CoNEXT, 2006.

[4] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, P. Tofanelli, Revealing Skype
Traffic: when randomness plays with you, in: ACM SIGCOMM, 2007.

[5] CAIDA. http://www.caida.org.

[6] M.P. Collins, M.K. Reiter, Hit-List worm detection and bot
identification in large networks using protocol graphs, in: RAID, 2007.

[7] F. Constantinou, P. Mavrommatis, Identifying known and unknown
peer-to-peer traffic, in: IEEE NCA, 2006.

[8] DatCat, Internet Measurement Data Catalog. http://www.datcat.org.

[9] D. Ellis, J. Aiken, K. Attwood, S. Tenarglia, A behavioral approach to
worm detection, in: ACM CCS WORM, 2004.

[10] J. Erman, M. Arlitt, A. Mahanti, Traffic classification using clustering
algorithms, in: ACM SIGCOMM MineNet, 2006.

[11] A. Este, F. Gringoli, L. Slagerelli, On the stability of the information
carried by traffic flow features at the packet level, ACM SIGCOMM
CCR 39 (3) (2009) 13-18.

[12] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, W. Lee, Polymorphic
blending attacks, in: USENIX Security Symposium, 2006.

[13] A. Gerber, J. Houle, H. Nguyen, M. Roughan, S. Sen, P2P, the Gorilla in
the cable, in: National Cable and Telecommunications Association
(NCTA), 2003.

[14] G. Gu, R. Perdisci, J. Zhang, W. Lee. BotMiner: clustering analysis of
network traffic from protocol- and structure-independent botnet
detection, in: USENIX Security Symposium, 2008.

[15] P. Haffner, S. Sen, O. Spatscheck, D. Wang, ACAS: automated construction
of application signatures, in: ACM SIGCOMM MineNet, 2005.

[16] M. lliofotou, M. Faloutsos, M. Mitzenmacher, Exploiting dynamicity
in graph-based traffic analysis: techniques and applications, in: ACM
CoNEXT, 2009.

[17] M. lliofotou, B. Gallagher, G. Xie, T. Eliassi-Rad, M. Faloutsos,
Profiling-by-association: a resilient traffic profiling solution for the
internet backbone, in: ACM CoNEXT, 2010.

[18] M. Iliofotou, H. Kim, P. Pappu, M. Faloutsos, M. Mitzenmacher, G.
Varghese, Graph-based P2P traffic classification at the internet
backbone, in: IEEE GI, 2009.

[19] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, G.
Varghese, Network monitoring using traffic dispersion graphs
(TDGs), in: ACM IMC, 2007.

[20] IPOQUE - Bandwidth Management with Deep Packet Inspection,
Internet Study: The Impact of P2P File Sharing, Voice over IP, Instant
Messaging, One-Click Hosting and Media Streaming on the Internet,
2009.

[21] Y. Jin, S. Esam, ZL. Zhang, Unveiling core network-wide
communication patterns through application traffic activity graph
decomposition, in: ACM SIGMETRICS, 2009.

[22] W. John, S. Tafvelin, Heuristics to classify internet backbone traffic
based on connection patterns, in: IEEE ICOIN, 2008.

[23] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, M. Faloutsos, Is P2P
dying or just hiding? in: IEEE GLOBECOM, 2004.

[24] T. Karagiannis, A. Broido, M. Faloutsos, K. claffy, Transport layer
identification of P2P traffic, in: ACM IMC, 2004.

[25] T. Karagiannis, K. Papagiannaki, M. Faloutsos, BLINC: multi-level
traffic classification in the dark, in: ACM SIGCOMM, 2005.

[26] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, K. Lee,
Internet traffic classification demystified: myths, caveats, and the
best practices, in: ACM CoNEXT, 2008.

[27] C. Labovitz, S. Lekel-johnson,]. Oberheide, F. Jahanian, Internet inter-
domain traffic, in: ACM SIGCOMM, 2010.

[28] J. Ma, K. Levchenko, C. Kreibich, S. Savage, G.M. Voelker, Unexpected
means of protocol inference, in: ACM IMC, 2006.

[29] A. McGregor, M. Hall, P. Lorier,]. Brunskill, Flow clustering using
machine learning techniques, in: PAM, 2004.

[30] A. Moore, K. Papagiannaki, Toward the accurate identification of
network applications, in: PAM, 2005.

[31] M.EJ. Newman, The structure and function of complex networks,
SIAM Review 45 (2003) 167.

[32] T.T.T. Nguyen, G. Armitage, A survey of techniques for internet traffic
classification using machine learning, [IEEE Communications Surveys
and Tutorials, 4th ed., March, 2008.

[33] S. Sen, O. Spatscheck, D. Wang, Accurate, scalable in-network
identification of p2p traffic using application signatures, in:
WWW, 2004.

[34] S. Sen,]. Wang, Analyzing peer-to-peer traffic across large networks,
IEEE/ACM Transaction on Networking 12 (2) (2004) 219-232.

[35] G. Tan, M. Poletto, J. Guttag, F. Kaashoek, Role classification of hosts
within enterprise networks based on connection patterns, in:
USENIX Annual Technical Conference, 2003.

[36] I. Trestian, S. Ranjan, A. Kuzmanovic, A. Nucci, Unconstrained
endpoint profiling (Googling the Internet), in: ACM SIGCOMM, 2008.

[37] G. Urvoy-Keller, T. En-Najjary, Challenging statistical classification
for operational usage: the ADSL case, in: ACM IMC, 2009.

[38] LH. Witten, E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques, 2nd ed., Morgan Kaufman, 2005.

[39] Y. Xie, V. Sekar, D. Maltz, M. Reiter, H. Zhan, Forensic analysis of
epidemic attacks in federated networks, in: IEEE ICNP, 2006.

[40] K. Xu, Z. Zhang, S. Bhattacharyya, Profiling internet backbone traffic:
behavior models and applications, in: ACM SIGCOMM, 2005.

Marios Iliofotou received the B.S. degree in
Electrical and Computer Engineering from the
Technical University of Crete, in Greece, and
the M.S. and Ph.D. degree in Computer Science
from the University of California, Riverside, in
2007 and 2011, respectively. His current
research investigates the effectiveness of
graph-based algorithms for managing and
protecting large IP networks. During the
course of his Ph.D., Marios has worked as an
intern at Microsoft Research in Cambridge,
Telefonica Research in Barcelona, the Law-
rence Livermore National Laboratory, Narus, and Cisco Systems.

http://www.caida.org
http://www.datcat.org

1920 M. Iliofotou et al./ Computer Networks 55 (2011) 1909-1920

Hyun-chul Kim is an assistant professor in
the School of Computer Science and Engi-
neering at Seoul National University. His
research interests include content-centric
networking, measurement, analysis and
modeling of Internet traffic and topology, and
user behavior patterns in a variety of large-
scale applications such as IPTV, VoD, VoIP, P2P
file sharing, massively multi-player online
role-playing games (MMORPGs), and the
Web. Kim received his Ph.D. in computer sci-
ence from the Korean Advanced Institute of
Science and Technology (KAIST).

Michalis Faloutsos is a faculty member at the
Computer Science Department in University
of California, Riverside. He got his bachelor’s
degree at the National Technical University of
Athens and his M.Sc and Ph.D. at the Univer-
sity of Toronto. His interests include, Internet
protocols and measurements, peer-to-peer
networks, network security, BGP routing, and
ad-hoc networks. He is actively involved in
the community as a reviewer and a TPC
member in many conferences and journals.
With his two brothers, he co-authored the
paper on powerlaws of the Internet topology SIGCOMM’99, which is one
of the top ten most cited papers of 1999. His most recent work on peer-
to-peer measurements have been widely cited in popular printed and
electronic press such as slashdot, ACM Electronic News, USA Today, and
Wired. Most recently he has focused on the classification of traffic and
identification of abnormal network behavior. He also works in the area of
Internet routing (BGP), and ad hoc networks routing, and network secu-
rity, with emphasis on routing.

Michael Mitzenmacher is a Professor of
Computer Science in the School of Engineer-
ing and Applied Sciences at Harvard Univer-
sity. He graduated summa cum laude with a
B.A. in mathematics and computer science
from Harvard in 1991. After studying mathe-
matics for a year in Cambridge, England, on
the Churchill Scholarship, he obtained his
Ph. D. in computer science at U.C. Berkeley in
1996.
His work on low-density parity-check codes
/ shared the 2002 IEEE Information Theory
Society Best Paper Award and won the 2009 ACM SIGCOMM Test of Time
Award. His textbook on randomized algorithms and probabilistic tech-

niques in computer science was published in 2005 by Cambridge
University Press.

Prashanth Pappu received his Doctor of Sci-
ence degree from Washington University in
St. Louis where his research was focused on
design of scalable routers and included QoS
architectures, packet lookup and scheduling
algorithms. Later, he was a Technical Leader at
Cisco Systems where he led the design of
Cisco’'s data center, storage and Ethernet
switches. He’s currently the Director of Prod-
uct Management at Conviva Inc. that is cre-
ating a real-time, viewer-centric platform for
delivering the highest resolution, broadcast
quality video on the Internet.

George Varghese worked at DEC for several
years designing DECNET protocols and prod-
ucts (bridge architecture, Gigaswitch) before
obtaining his Ph.D. in 1992 from MIT. He
worked from 1993-1999 at Washington
University. He joined UCSD in 1999, where he
currently is a professor of computer science.
He won the ONR Young Investigator Award in
1996, and was elected to be a Fellow of the
Association for Computing Machinery (ACM)
in 2002. Together with colleagues, he has 16
patents awarded in the general field of
Network Algorithmics. Several of the algorithms he has helped develop
have found their way into commercial systems including Linux (timing
wheels), the Cisco GSR (DRR), and Microsoft Windows (IP lookups). He
also helped design the lookup engine for Procket’s 40 Gbps forwarding
engine. He has written a book on building fast router and endnode
implementations called “Network Algorithmics”, which was published in
December 2004 by Morgan-Kaufman. In May 2004, he co-founded NetSift
Inc., where he was the President and CTO. NetSift was acquired by Cisco
Systems in 2005. From Aug 2005 to Aug 2006, he worked at Cisco Systems
to help equip future routers and switches to detect traffic patterns for
measurement and security.

	Graption: A graph-based P2P traffic classification framework for the internet backbone
	Introduction
	Studying the TDGs of P2P applications
	Traffic dispersion graphs (TDGs)
	Identifying P2P TDGs
	Practical considerations for TDGs
	Stability of metrics over time
	Selecting the interval of observation

	The Graption framework
	Implementation details of Graption-P2P
	Evaluating Graption-P2P
	Forming clusters
	Identifying P2P traffic

	Comparison with BLINC [25]
	Identifying the unknown
	Other Graption configurations

	Related work
	Traffic classification
	Worm detection
	Measurements on network-wide interactions

	Discussion
	Summary and conclusions
	Acknowledgments
	References

